Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-27T03:25:44.184Z Has data issue: false hasContentIssue false

Fluorinated Diamond-Like Carbon Films Produced by Plasma Immersion Ion Processing Technique

Published online by Cambridge University Press:  10 February 2011

M. Hakovirta
Affiliation:
Los Alamos National Laboratory, Los Alamos, NM 87545
D. H. Lee
Affiliation:
Los Alamos National Laboratory, Los Alamos, NM 87545
X. M. He
Affiliation:
Los Alamos National Laboratory, Los Alamos, NM 87545
M. Nastasi
Affiliation:
Los Alamos National Laboratory, Los Alamos, NM 87545
Get access

Abstract

Fluorinated diamond-like carbon (F-DLC) coatings were deposited on polished silicon substrates with plasma immersion ion processing (PIIP) technique. In the PIIP technique, pulsed glow discharge plasma from a mixture of acetylane and hexafluoroethane gases was used. Contact angle measurements were performed in order to see the un-wetting properties of the coatings. The film composition was measured with Rutherford Backscattering Spectroscopy (RBS) and Elastic Recoil Detection Analysis (ERDA) and the hardness was measured with a Nanoindenter® II. The results clearly show that the un-wetting properties and hardness are strongly dependent on the fluorine incorporation in the F-DLC coatings. With optimized gas ratio of acetylane and hexafluoroethane gases, a combination of extremely good un-wetting properties and high hardness was achieved.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. He, X. M., Bardeau, J. F., Lee, D. H., Walter, K. C., Tuszewski, M. and Nastasi, M., J. Vac. Sci. Technol. B 17, p. 822, (1999).Google Scholar
2. He, X. M., Lee, D. H., Walter, K. C., Li, D. Q. and Nastasi, M., J. Mater. Res. 14, p. 2080, (1999).Google Scholar
3. Lappalainen, R., Anttila, A. and Heinonen, H., Clin Orthop and Related Res. 352, p. 118, (1998).Google Scholar
4. Lappalainen, R., Heinonen, H., Anttila, A. and Santavirta, S., Diam.Relat. Mater. 7 p. 482 (1998).Google Scholar
5. Grischke, M., Bewilogua, K., Trojan, K. and Dimigen, H., Surf. Coat. Technol. 74, p. 739, (1995).Google Scholar
6. Flösch, D., Clarotti, G., Geckeler, K.E., Schué, F. and Göpel, W., J. Membrane Sci. 73, p. 163, (1992).Google Scholar
7. Quaranta, F., Valentini, A., Favia, P., Lamendola, R., d'Agostino, R. D.. Appl. Phys. Lett. 63, p. 10, (1993).Google Scholar
8. Butter, R. S., Waterman, D.R., Lettington, A. H., Ramos, R. T. and Fordham, E. J., Thin Solid Films, p. 107 (1997).Google Scholar
9. Seth, J. and Babu, S.V., Thin Solid Films. 230, p. 90, (1993).Google Scholar
10. Grischke, M., Hieke, A., Morgenweck, F. and Dimigen, H., Diam. Relet. Mater. 7, p. 454, (1998).Google Scholar
11. Donnet, C., Fontaine, J., Grill, A., Patel, V., Jahnes, C. and Belin, M., Surf. Coat. Technol. 94–95, p. 531, (1997).Google Scholar
12. Walter, K.C., Nastasi, M. and Munson, C., Surf, Coat.Technol. 93, p. 287, (1997).Google Scholar
13. Malik, S. M., Fetherston, R. P. and Conrad, J. R., J. Vac. Sci. Technol. A 15, p. 2875, (1997).Google Scholar
14. Conrad, J.R., Radtke, J.L., Dold, R. A., Worzala, F.J. and Tran, N.C., J. Appl. Phys. 62, p. 4591, (1987).Google Scholar
15. Handbook of Modern Ion Beam Materials Analysis, edited by Tesmer, J. R. and Nastasi, M., (MRS, Pittsburg, 1995), p. 37139.Google Scholar
16. Jang, J. and Park, K. C., US Patent No. 5939149, 1999.Google Scholar