Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-12T05:33:27.613Z Has data issue: false hasContentIssue false

Fluid and Protein Motion in Monomolecular and Bilayer Films Overlying Sublayers of Finite Depth

Published online by Cambridge University Press:  10 February 2011

H.A. Stone*
Affiliation:
Division of Engineering & Applied Sciences, Harvard University, Cambridge, MA 02138, [email protected]
Get access

Abstract

Motion of a monolayer, bilayer or other surface film is affected by the presence of a surrounding fluid phase. Several recent experimental and theoretical studies have examined this viscous coupling with particular attention given to situations where the subphase provides the dominant resistance to motion. This research is summarized and the translation of a membrane-bound particle over a sublayer of finite depth is considered.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Saffman, P.G. and Delbrück, M., Proc. Nat. Acad. Sci. USA 72, 3111 (1975).Google Scholar
2. McConnell, H.M., Annu. Rev. Phys. Chem. 42, 171 (1991).Google Scholar
3. Schwartz, D.K., Knobler, C.M. and Bruinsma, R., Phys. Rev. Lett. 73, 2841 (1994).Google Scholar
4. Stone, H.A., Physics of Fluids 12, 2931 (1995).Google Scholar
5. Rutgers, M.A., Wu, X.-I., Bhagavatula, R., Petersen, A.A. and Goldburg, W.I., Phys. Fluids 8, 2847 (1996).Google Scholar
6. Saffman, P.G., J. Fluid Mech. 73, 593 (1976).Google Scholar
7. Hughes, B.D., Pailthorpe, B. A. and White, L. R., J. Fluid Mech. 110, 349 (1981).Google Scholar
8. Evans, E. and Sackmann, E., J. Fluid Mech. 194, 553 (1955).Google Scholar
9. Andelman, D., Brochard, F., Knobler, C. M. and Rondelez, F. in Micelles, Membranes, Microemulsions, and Monolayers edited by Gelbart, W.M., Ben-Shaul, A. and Roux, D. (Springer-Verlag, New York, 1994), p. 559.Google Scholar
10. Stone, H.A. and McConnell, H.M., Proc. Roy. Soc. London A448, 97 (1995).Google Scholar
11. Stone, H.A. and McConnell, H.M., J. Phys. Chem. 99, 13505 (1995).Google Scholar
12. Lubensky, D.K. and Goldstein, R.E., Phys. Fluids 8, 843 (1996).Google Scholar
13. Benvegnu, D.J. and McConnell, H.M., J. Phys. Chem. 96, 6820 (1992).Google Scholar
14. Mann, E.K., Hénon, S., Langevin, D., Meunier, J., and Léger, L., Phys. Rev. E 51, 5708 (1995).Google Scholar
15. Rutgers, M., Wu, X.-L. and Goldburg, W., presented at the 1996 APS Fluid Dynamics Meeting, Syracuse, NY.Google Scholar
16. Bussell, S.J., Hammer, D.A. and Koch, D.L., J. Fluid Mech. 258, 167 (1994).Google Scholar
17. de Koker, R.E., PhD thesis, Stanford University, 1996.Google Scholar
18. Chou, T. and Nelson, D.R., J. Chem. Phys. 101, 9022 (1994).Google Scholar
19. Chou, T., Lucas, S.K. and Stone, H.A., Phys. Fluids 7, 1872 (1995).Google Scholar