Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-26T04:41:25.411Z Has data issue: false hasContentIssue false

Fluctuations of Step Edges: Revelations About Atomic Processes Underlying Surface Mass Transport

Published online by Cambridge University Press:  10 February 2011

T. L. Einstein
Affiliation:
Department of Physics, University of Maryland, College Park, MD 20742-4111, [email protected] d.edu
S. V. Khare
Affiliation:
Department of Physics, University of Maryland, College Park, MD 20742-4111
O. Pierre-Louis
Affiliation:
Department of Physics, University of Maryland, College Park, MD 20742-4111, [email protected]
Get access

Abstract

Experimental advances in recent years make possible quantitative observations of step-edge fluctuations. By applying a capillary-wave analysis to these fluctuations, one can extract characteristic times, from which one learns about the mass-transport mechanisms that underlie the motion as well as the associated kinetic coefficients [1-3]. The latter do not require a priori insight about the microscopic energy barriers and can be applied to situations away from equilibrium. We have studied a large number of limiting cases and, by means of a unified formalism, the crossover between many of these cases[4]. Monte Carlo simulations have been used to corroborate these ideas. We have considered both isolated steps and vicinal surfaces; illustrations will be drawn from noble-metal systems, though semiconductors have also been studied. Attachment asymmetries associated with Ehrlich-Schwoebel barriers play a role in this behavior. We have adapted the formalism for nearly straight steps to nearly circular steps in order to describe the Brownian motion of single-layer clusters of adatoms or vacancies on metal surfaces, again in concert with active experimental activity [3,5]. We are investigating the role of external influences, particularly electromigration, on the fluctuations.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Bartelt, N. C., Einstein, T. L., and Williams, E. D., Surface Sci. 273, 252 (1993).Google Scholar
2. Bartelt, N. C., Einstein, T. L., and Williams, E. D., Surface Sci. 312, 411 (1994).Google Scholar
3. Einstein, T. L. and Khare, S. V., in Dynamics of Crystal Surface and Interfaces, Duxbury, P. M. and Pence, T. J., eds. (Plenum,New York, 1997), 83.Google Scholar
4. Khare, S. V. and Einstein, T. L., Phys. Rev. B 57, 4782 (1998).Google Scholar
5. Khare, S. V. and Einstein, T. L., Phys. Rev. B 54, 11752 (1996).Google Scholar
6. Mullins, W. W., J. Appl. Phys. 28, 333 (1957); J. Appl. Phys. 36, 77 (1959); in Metal Surfaces: Structure. Energetics and Kinetics, N.A. Gjostein and R.W. Roberts, eds., Am. Soc. Metals, Metals Park, Ohio, 1963), p. 17.Google Scholar
7. Bartelt, N. C., Einstein, T. L., and Williams, E. D., Surface Sci. 276, 308 (1992).Google Scholar
8. Kardar, M., Turkish J. of Phys. 18, 221 (1994).Google Scholar
9. Bartelt, N. C., Goldberg, J. L., Einstein, T. L., and Williams, E. D., Surface Sci. 273, 252 (1992).Google Scholar
10. Bartelt, N. C., Goldberg, J. L., Einstein, T. L., Williams, E. D., Heyraud, J. C., and Métois, J. J., Phys. Rev. B 48, 15453 (1993).Google Scholar
11. Bartelt, N. C. and Tromp, R. M., Phys. Rev. B 54, 11731 (1996).Google Scholar
12. Pai, W. W., Bartelt, N. C., and Reutt-Robey, J. E., Phys. Rev. B 53, 15991 (1996).Google Scholar
13. Bales, G. S., and Zangwill, A., Phys. Rev. B 41, 5500 (1990).Google Scholar
14. Pimpinelli, A., Villain, J., Wolf, D. E., Métois, J. J., Heyraud, J. C., Elkinani, I., and Uimin, G., Surface Sci. 295, 143 (1993).Google Scholar
15. Blagojević, B. and Duxbury, P. M., in Dynamics of Crystal Surface and Interfaces, Duxbury, P. M. and Pence, T. J., eds (Plenum, New York, 1997), 1.Google Scholar
16. Ozcomert, J. S., Pai, W. W., Bartelt, N. C., Einstein, T. L., and Reutt-Robey, J. E., J. Vac. Sci. Technol. A 12, 2224 (1994).Google Scholar
17. Reutt-Robey, J. E. and Pai, W. W., in Surface Diffusion: Atomistic and Collective Processes, Tringides, M. C., ed., NATO-ASI Series B, vol. 360 (Plenum, New York, 1997), p. 475.Google Scholar
18. Alfonso, C., Bermond, J. M., Heyraud, J. C., and Métois, J. J., Surface Sci. 262, 37 (1992).Google Scholar
19. Bartelt, N. C., Tromp, R. M., and Williams, E. D., Phys. Rev. Lett. 73, 1656 (1994).Google Scholar
20. Kuipers, L., Hoogeman, M. S., and Frenken, J. W. M., Phys. Rev. Lett. 71, 3517 (1993).Google Scholar
21. Kuipers, L., Hoogeman, M. S., Frenken, J. W. M., and Beijeren, H. van, Phys. Rev. B 52, 11387 (1995).Google Scholar
22. Poensgen, M., Wolf, J. F., Frohn, J., Giesen, M., and Ibach, H., Surface Sci. 274, 430 (1992).Google Scholar
23. Giesen-Seibert, M., Jentjens, R., Poensgen, M., and Ibach, H., Phys. Rev. Lett. 71, 3521 (1992); 73, E911 (1994).Google Scholar
24. Giesen-Seibert, M. and Ibach, H., Surface Sci. 316, 205 (1994)Google Scholar
25. Giesen-Seibert, M., Schmitz, F., Jentjens, R., and Ibach, H., Surface Sci. 329, 47 (1995).Google Scholar
26. a) Masson, L., Barbier, L., Cousty, J., and Salanon, B., Surface Sci. 317, L1115 (1994); b) L. Barbier, L. Masson, J. Cousty, and B. Salanon, Surface Sci. 345, 197 (1996).Google Scholar
27. Hoogeman, M. S., Schlosser, D. C., and Frenken, J. W. M., Phys. Rev. B 53, R13299 (1996).Google Scholar
28. Wang, P., Pfnür, H., Khare, S. V., Einstein, T. L., Williams, E. D., Pai, W. W., and ReuttRobey, J. E., Bull. Am. Phys. Soc. 41, 189 (1996), and preprint.Google Scholar
29. Giesen, M., Icking-Konert, G. Schulze, Ibach, H., Surface Sci. 366, 229 (1996).Google Scholar
30. Pierre-Louis, O. and Misbah, C., Phys. Rev. B 58, xxx (1998).Google Scholar
31. Pierre-Louis, O., Ph. D. thesis, University of Grenoble 1.Google Scholar
32. Bales, G. S. and Zangwill, A., Phys. Rev. B 41, 5500 (1990).Google Scholar
33. Ilhle, T., Misbah, C., and Pierre-Louis, O., Phys. Rev. B 58, xxx (1998).Google Scholar
34. Bonzel, H. and Mullins, W. W., Surface Sci. 350, 285 (1996).Google Scholar
35. Khare, S. V., Ph. D. thesis, University of Maryland, College Park.Google Scholar
36. Bogicevic, A., Ph.D. dissertation, Chalmers University of Technology, Gothenberg, Sweden, 1998; Bogicevic, A., Strömquist, J., and Lundqvist, B.I., submitted for publication.Google Scholar
37. Khare, S. V., Bartelt, N. C., and Einstein, T. L., Phys. Rev. Lett. 75, 2148 (1995).Google Scholar
38. For example, in the equilibrium equipartition equation [Noziéres, P. in Solids Far From Equilibrium, Godréche, C., ed. (Cambridge Univ. Press, Cambridge, 1992), chap. 1] (|gn(t)|2) = kBT/27ΦRβn2, n2is replace by n2−1. Thus, the n=l mode associated with diffusion appears to diverge. The interpretation is that (|gn(t)|2) and τl become proportional to time; the early-time arguments near eqn. (20) of ref. [5] are no longer needed. Physically, the n=1 mode of clusters corresponds to the q=0 mode of [isolated] steps in that displacements cost no energy.Google Scholar
39. Sholl, D. S. and Skodje, R. T., Physica A 231, 631 (1996).Google Scholar
40. Pai, W. W., Swan, A. K., Zhang, Z., and Wendelken, J. F., Phys. Rev. Lett. 79, 3210 (1997).Google Scholar
41. Bardotti, L., Bartelt, M. C., Jenks, C. J., Stoldt, C. R., Wen, J.-M., Zhang, C.-M., Thiel, P. A., and Evans, J. W., Langmuir, 14, 1487 (1998).Google Scholar
42. Rosenfeld, G., Esser, M., Morgenstern, K., and Comsa, G., this MRS proceedings volume.Google Scholar
43. a) Morgenstern, K., Rosenfeld, G., Poelsema, B., and Comsa, G., Phys. Rev. Lett. 74, 2058 (1995); b) K. Morgenstern, G. Rosenfeld, and G. Comsa, Phys. Rev. Lett. 76, 2113 (1996); c) G. Rosenfeld, K. Morgenstern, and G. Comsa, in Surface Diffusion: Atomistic and Collective Processes, M. C. Tringides, ed., NATO-ASI Series B, vol. 360 (Plenum, New York, 1997), p. 361.Google Scholar
44. a) Wen, J. M., Chang, S.-L., Burnett, J. W., Evans, J. W., and Thiel, P. A., Phys. Rev. Lett. 73, 2591 (1994); b) J. M. Wen, J. W. Evans, M. C. Bartelt, J. W. Burnett, and P. A. Thiel, Phys. Rev. Lett. 76, 652 (1996)Google Scholar
45. a) Siclen, C. DeW. Van, Phys. Rev. Lett. 75, 1574 (1995); b) J. W. Evans, P. A. Thiel, and R. Wang, 1997, unpublished.Google Scholar
46. Schmid, A. K., Hwang, R. Q., and Bartelt, N. C., Phys. Rev. Lett. 80, 2153 (1998).Google Scholar
47. Bogicevic, A., Liu, S., Jacobsen, J., Lundqvist, B., and Metiu, H., Phys. Rev. B 57, R9459 (1998).Google Scholar
48. Gruber, E. E., J. Appl. Phys. 38, 243 (1967).Google Scholar
49. Soler, J. M., Phys. Rev. B 53, R10540 (1996).Google Scholar
50. Kürpick, U., Kürpick, P., and Rahman, T. S., Surface Sci. 383, L713 (1997).Google Scholar
51. Binder, K. and Kalos, M. H., J. Stat. Phys. 22, 363 (1980).Google Scholar
52. Binder, K. and Stauffer, D., Phys. Rev. Lett. 33, 1006 (1974); K. Binder, Phys. Rev. B 15, 4425 (1977).Google Scholar
53. Rao, M., Kalos, M. H., Lebowitz, J. L., and Marro, J., Phys. Rev. B 13, 7325 (1976).Google Scholar
54. a) Mattsson, T. R., private communication; G. Mills, T. R. Mattsson, and H. Metiu, unpublished, 1998; b) H. Metiu, T. R. Mattsson, and G. Mills, this MRS proceedings volume.Google Scholar
55. Pierre-Louis, O. and Misbah, C., Phys. Rev. Lett. 76, 4761 (1996).Google Scholar
56. Latyshev, A. V., Aseev, A. L., Krasilnikov, A. B., and Stenin, S. I., Surface Sci. 213, 157 (1989).Google Scholar
57. Ho, P. S., J. Appl. Phys. 41, 64 (1970).Google Scholar
58. Burton, W. K., Cabrera, N., and Frank, F. C., Phil. Trans. Roy. Soc. (London), Ser. A 243, 299 (1951).Google Scholar
59. Wang, W. and Suo, Z., J. Appl. Phys. 79, 2394 (1996).Google Scholar