Published online by Cambridge University Press: 10 February 2011
Experimental advances in recent years make possible quantitative observations of step-edge fluctuations. By applying a capillary-wave analysis to these fluctuations, one can extract characteristic times, from which one learns about the mass-transport mechanisms that underlie the motion as well as the associated kinetic coefficients [1-3]. The latter do not require a priori insight about the microscopic energy barriers and can be applied to situations away from equilibrium. We have studied a large number of limiting cases and, by means of a unified formalism, the crossover between many of these cases[4]. Monte Carlo simulations have been used to corroborate these ideas. We have considered both isolated steps and vicinal surfaces; illustrations will be drawn from noble-metal systems, though semiconductors have also been studied. Attachment asymmetries associated with Ehrlich-Schwoebel barriers play a role in this behavior. We have adapted the formalism for nearly straight steps to nearly circular steps in order to describe the Brownian motion of single-layer clusters of adatoms or vacancies on metal surfaces, again in concert with active experimental activity [3,5]. We are investigating the role of external influences, particularly electromigration, on the fluctuations.