Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-27T02:51:38.655Z Has data issue: false hasContentIssue false

A First-Principles Study of Short Range Order in Cu-Zn

Published online by Cambridge University Press:  21 February 2011

M. Sluiter
Affiliation:
Lawrence Berkeley Laboratory, Materials and Chemical Sciences Department, Berkeley, CA 94720, USA Lawrence Livermore National Laboratory, P.O. Box 808, Condensed Matter Division L-268, Livermore, CA 94550, USA
P.E.A. Turchi
Affiliation:
Lawrence Livermore National Laboratory, P.O. Box 808, Condensed Matter Division L-268, Livermore, CA 94550, USA
D.D. Johnson
Affiliation:
Sandia National Laboratory, Div. 8341, P.O. Box 969, Livermore, CA 94551-0969, USA
F.J. Pinski
Affiliation:
University of Cincinnati, Dept. of Physics, Cincinnati, OH 45221, USA
D.M. Nicholson
Affiliation:
Oak Ridge National Laboratory, Metals and Ceramics Div., P.O. Box 2008, Oak Ridge, TN 37831, USA
G.M. Stocks
Affiliation:
Oak Ridge National Laboratory, Metals and Ceramics Div., P.O. Box 2008, Oak Ridge, TN 37831, USA
Get access

Extract

Recently, measurements of short-range order (SRO) diffuse neutron scattering intensity have been performed on quenched Cu-Zn alloys with 22.4 to 31.1 atomic percent (a/o) Zn, and pair interactions were obtained by Inverse Monte Carlo simulation [1]. These results are compared to SRO intensities and effective pair interactions obtained from first-principles electronic structure calculations. The theoretical SRO intensities were calculated with the Cluster Variation Method (CVM) in the tetrahedron-octahedron approximation with first-principles pair interactions as input. More generally, phase stability in the Cu-Zn alloy system is discussed, using ab-initio energetic properties.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Reinhard, L., Schoenfeld, B., Kostorz, G., and Buehrer, W., this symposium, and Reinhard, L., Ph.D. Thesis ETH, unpublished, Zurich, Switzerland (1989).Google Scholar
2 Hume-Rothery, W., Reynolds, P.W., and Raynor, G.V., J. Inst. Metals 66, 191 (1940)Google Scholar
3 Gyorffy, B.L. and Stocks, G.M., Phys. Rev. Lett. 50, 374 (1983).CrossRefGoogle Scholar
4 Gonis, A., Zhang, X.G., Freeman, A.J., Turchi, P., Stocks, G.M., and Nicholson, D.M., Phys. Rev. B 36, 4630 (1987).CrossRefGoogle Scholar
5 Ducastelle, F. and Gautier, F., J. Phys. F 6, 2039 (1976).CrossRefGoogle Scholar
6 Turchi, P.E.A., Stocks, G.M., Butler, W.H., Nicholson, D.M., and Gonis, A., Phys. Rev. B 37, 5982 (1988).CrossRefGoogle Scholar
7 Bieber, A. and Gautier, F., Acta Metall. 34, 2291 (1986).CrossRefGoogle Scholar
8 Turchi, P.E.A., Sluiter, M., and Fontaine, D. de, Phys. Rev. B 36, 3161 (1987).CrossRefGoogle Scholar
9 Sigh, C., Kosugi, M., and Sanchez, J.M., Phys. Rev. Lett. 57, 253 (1986).Google Scholar
10 Sluiter, M., Turchi, P., Zezhong, Fu, and Fontaine, D. de, Phys. Rev. Lett. 60, 716 (1988). M. Sluiter, Ph.D. Thesis, unpublished, University of California, Berkeley (1988).Google Scholar
11 Bieber, A. and Gautier, F., J. Phys. Soc. Jap. 53, 2061 (1984).Google Scholar
12 Spencer, P.J., Calphad 10, 175 (1986).CrossRefGoogle Scholar
13 Ahlers, M., Prog. Mat. Sci. 30, 135 (1986).Google Scholar
14 Inden, G., Z. Metallkunde 66, 648 (1975).Google Scholar
15 Sluiter, M. and Turchi, P.E.A., to be published.Google Scholar
16 Sanchez, J. M., Physica 111A, 200 (1982).CrossRefGoogle Scholar
17 Finel, A., These de doctorat d'Etat, unpublished, University Pierre et Marie Curie, 18 Paris (1987).Google Scholar
19 Mohri, T., Sanchez, J.M., and Fontaine, D. de, Acta Metall. 33, 1463 (1985). J. Kanamori and Y. Kakehashi, J. Phys. (Paris) 38, C7–274 (1977).CrossRefGoogle Scholar