Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-26T04:14:19.604Z Has data issue: false hasContentIssue false

First-Principles Calculation of the Orbital Magnetic Moment of O and Cr in Half-metallic CrO2

Published online by Cambridge University Press:  01 February 2011

Horng-Tay Jeng
Affiliation:
Physics Division, National Center for Theoretical Sciences, Hsinchu 300, Taiwan
G. Y. Guo
Affiliation:
Department of Physics, National Taiwan University, Taipei 106, Taiwan
Get access

Abstract

The electronic and magnetic properties of half-metallic CrO2 have been studied by using the full-potential linearized muffin-tin orbital method within the local spin-density approximation (LSDA)+U approach. It is found that the orbital magnetic moment of Cr atom is quenched while O atom exhibit relatively significant orbital moment in CrO2. For the Hubbard U of 3 eV, LSDA+U gives the orbital moment of -0.051μB/atom for Cr and -0.0025μB/atom for O, being in good agreement with the experimental orbital moments of -0.05 for Cr and -0.003μB/atom for O, respectively. In contrast, LSDA gives the orbital moment of -0.037 for Cr and -0.0011 μB/atom for O, being too small as compared with the magnetic circular dichroism measurements. For the larger U considered in this work, both spin and orbital moments almost increase linearly with respect to U.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Chamberland, B. L., Critical Rev. Solid State Sci. 7, 1 (1977).Google Scholar
2. Lewis, S. P., Allen, P. B., and Sasaki, T., Phys. Rev. B {/bf 55}, 10253 (1997).Google Scholar
3. Khan, D. C. and Erickson, R. A., Phys. Rev. B 1, 2243 (1970).Google Scholar
4. Fernandez, V., Vettier, C., Bergevin, F. de, Giles, C., and Neubeck, W., Phys. Rev. B 57, 7870 (1998).Google Scholar
5. Solovyev, I. V., Liechtenstein, A. I., and Terakura, K., Phys. Rev. Lett. 80, 5758 (1998).Google Scholar
6. Kwon, S. K. and Min, B. I., Phys. Rev. B 62, 73 (2000).Google Scholar
7. Huang, D. J., Jeng, H. T., Chang, C. F., Guo, G. Y., Chen, J., Wu, W. P., Chung, S. C., Shyu, S. G., Wu, C. C., Lin, H. J., and Chen, C. T., submitted to Phys. Rev. B, (2001).Google Scholar
8. Schwarz, K., J. Phys. F 16, L211 (1986).Google Scholar
9. Anisimov, V. I., Aryasetiawan, F., and Liechtenstein, A. I., J. Phys.: Condens. Matter 9, 767 (1997).Google Scholar
10. Korotin, M. A., and Anisimov, V. I., Khomskii, D. I., and Sawatzky, G. A., Phys. Rev. Lett. 80, 4305 (1998).Google Scholar
11. Tsujioka, T., Mizokawa, T., Okamoto, J., Fujimori, A., Nohara, M., Takagi, H., Yamaura, K., and Takano, M., Phys. Rev. B 56, R15509 (1997).Google Scholar
12. Stagarescu, C. B., Su, X., Eastman, D. E., Altmann, K. N., Himpsel, F. J., and Gupta, A., Phys. Rev. B 61, R9233 (2000).Google Scholar
13. Mazin, I. I., Singh, D. J., and Draxl, C. A., Phys. Rev. B 59, 411 (1999).Google Scholar
14. Savrasov, S. Y., Phys. Rev. B 54, 16470 (1996).Google Scholar
15. Liechtenstein, A. I., Anisimov, V. I., and Zaanen, J., Phys. Rev. B 52, R5467 (1995).Google Scholar
16. Vosko, S. H., Wilk, L., and Nusair, M., Can. J. Phys. 58, 1200 (1980).Google Scholar
17. Porta, P., Marezio, M., Remeika, J. P., and Dernier, P. D., Mater. Res. Bull. 7, 157 (1972).Google Scholar