Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-26T04:15:47.555Z Has data issue: false hasContentIssue false

First-Principles and Quantum Transport Studies of Metal-Graphene End Contacts

Published online by Cambridge University Press:  01 February 2011

Kyeongjae Cho
Affiliation:
[email protected], The University of Texas at Dallas, Richardson, Texas, United States
Cheng Gong
Affiliation:
[email protected], The University of Texas at Dallas, Richardson, United States
Geunsik Lee
Affiliation:
[email protected], The University of Texas at Dallas, Richardson, Texas, United States
Weichao Wang
Affiliation:
[email protected], The University of Texas at Dallas, Richardson, Texas, United States
Bin Shan
Affiliation:
[email protected], The University of Texas at Dallas, Richardson, Texas, United States
Eric M. Vogel
Affiliation:
[email protected], The University of Texas at Dallas, Materials Science and Engineering, Richardson, Texas, United States
Robert M. Wallace
Affiliation:
[email protected], The University of Texas at Dallas, Richardson, Texas, United States
Get access

Abstract

Metal-graphene contact is of critical significance in graphene-based nanoelectronics. There are two possible metal-graphene contact geometries: side-contact and end-contact. In this paper, we apply first-principles calculations to study metal-graphene end-contact for these three commonly used electrode metals (Ni, Pd and Ti) and find that they have distinctive stable end-contact geometries with graphene. Transport properties of these metal-graphene-metal (M-G-M) end-contact structures are investigated by density functional theory non-equilibrium Green’s function (DFT-NEGF) algorithm. The Transmission as a function of chemical potential (E-EF) shows asymmetric curves relative to the Fermi level. Transmission curves of Ni-G-Ni and Ti-G-Ti contact structures indicate that bulk graphene sheet is n-doped by Ni and Ti electrodes, but that of Pd-G-Pd shows p-doping of graphene by Pd electrode. The contact behaviors of these electrodes are consistent with experimental observations.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Venugopal, A., Colombo, L., and Vogel, E. M., Appl. Phys. Lett. 96, 013512 (2010)Google Scholar
2 Giovannetti, G., Khomyakov, P. A., Brocks, G., Karpan, V. M., van den Brink, J., and Kelly, P. J., Phys. Rev. Lett. 101, 026803 (2008).Google Scholar
3 Gong, C., Lee, G., Shan, B., Vogel, E. M., Wallace, R. M., and Cho, K., Phys. Rev. B (submitted)Google Scholar
4 Lee, E. J. H., Balasubramanian, K., Weitz, R. T., Burghard, M., and Kern, K., Nature Nanotech. 3, 486 (2008)Google Scholar
5 Huard, B., Stander, N., Sulpizio, J. A., and Goldhaber-Gordon, D., Phys. Rev. B 78, 121402(R) (2008).Google Scholar
6 Pi, K., McCreary, K. M., Bao, W., Han, Wei, Chiang, Y. F., Li, Y., Tsai, S.-W., Lau, C. N., and Kawakami, R. K., Phys. Rev. B 80, 075406 (2009)Google Scholar
7 Lopez, S. B.-, Vanevic, M., Kindermann, M., and Chou, M.Y., Phys. Rev. Lett. 104, 076807 (2010)Google Scholar
8 Wang, X., Ouyang, Y., Li, X., Wang, H., Guo, J., and Dai, H., Phys. Rev. Lett. 100, 206803 (2008)Google Scholar
9 Kresse, G., and Furthemsüller, J., Comput. Mater. Sci. 6, 15 (1996)Google Scholar
10 Kim, W. Y., Kim, K. S., J. Comp. Chem. 29 1073 (2008)Google Scholar
11 Kim, W. Y., Kim, K. S., Nature Nantech. 3 408 (2008)Google Scholar
12 Soler, J. M., Artacho, E., Gale, J. D., García, A., Junquera, J., Ordejón, P., and Portal, D. S.-, J. Phys. Condens. Matter 14, 27452779 (2002)Google Scholar
13 Low, T., Hong, S., Appenzeller, J., Datta, S., and Lundstrom, M., IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 56, NO. 6 (2009)Google Scholar