Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-28T18:40:58.543Z Has data issue: false hasContentIssue false

First-Principle Studies of Permanent-Magnet Materials

Published online by Cambridge University Press:  21 February 2011

S.S. Jaswal
Affiliation:
Behlen Laboratory of Physics and Center for Materials Research and Analysis, University of Nebraska-Lincoln, Lincoln, NE 68588-0111
R.F. Sabiryanov
Affiliation:
Behlen Laboratory of Physics and Center for Materials Research and Analysis, University of Nebraska-Lincoln, Lincoln, NE 68588-0111
Get access

Abstract

First-principle electronic structure studies complement experimental research on hard-magnet materials. Since the discovery of Nd 2Fel4B in 1984, the research in this area has been concentrated on T(Fe,Co)-rich rare-earth compounds such as RT12 and R2T17 and exchange coupled hard/soft phases. Self-consistent spin-polarized electronic structure calculations are carried out for the sequence YFc2→ YFe3→Y2Fe17→YFe12 to study the variation of the magnetization and Curie temperature as a function of the Fe concentration. Calculations are performed for R2T17 systems which show significant improvements in their Curie temperatures with interstitial and substitutional modifications. The calculated results are compared with the available experimental data. Computer simulations are carried out for FePt/Fe and SmCo5/Co1−x -Fex, hard/soft multilayers.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Buschow, K.H.J., Phys. Stat. Sol. (a) 7, 199 (1971).Google Scholar
2. Sabiryanov, R.F. and Jaswal, S.S., Phys. Rev. B 57, 7767 (1998).Google Scholar
3. Sabiryanov, R.F. and Jaswal, S.S., Phys. Rev. Lett. 79, 155 (1997).Google Scholar
4. Sabiryanov, R.F. and Jaswal, S.S., J Appi. Phys. 81, 5615 (1997).Google Scholar
5. Kneller, E.F. and Hawig, R., IEEE Trans. Magn. 27, 3588 (1991).Google Scholar
6. Skomski, R. and Coey, J.M.D., Phys. Rev. B 48, 15812 (1993).Google Scholar
7. Sabiryanov, R.F. and Jaswal, S.S., J. Magn. Magn. Mater. 177–181, 989 (1998).Google Scholar
8. Sabiryanov, R.F. and Jaswal, S.S., Phys. Rev. B 58, 12071 (1998).Google Scholar
9. Andersen, O.K., Phys. Rev. B 8, 3060 (1975).Google Scholar
10. Liechtenstein, A.I., Katsnelson, M.I, Antropov, V.P., and Gubanov, V.A., J. Magn. Magn. Mater. 21, 35 (1988).Google Scholar
11. Chen, K., Ferrenberg, A.M., Landau, D.P., Phys. Rev. B 48, 3249 (1993).Google Scholar
12. Li, Z W., Zhou, X.Z., and Morrish, A.H., Phys. Rev. B 55, 2891 (1995). Z.W. Li, A. H. Morrish, Phys. Rev. B 55, 3670 (1997).Google Scholar
13. Long, G.J., Marasinghe, G.K., Mishra, S., Pringle, O.A., Hu, Z., Yelon, W.B., Middleton, D.P., Bushow, K-H.J, and Grandjean, F., J. Appl. Phys. 76, 5383 (1994);Google Scholar
14. Sabiryanov, R.F., Bose, S.K., and Mryasov, O.N., Phys. Rev. B 51, 8958 (1995)Google Scholar
15. Katter, M., Wecker, J., Kuhrt, C., and Shultz, L., J Magn. Magn. Mater. 114, 35 (1992).Google Scholar
16. Li, ZW., Zhou, X.Z, and Morrish, A.H, J. Magn. Magn. Mater. 150, 57 (1995).Google Scholar
17. Wang, Z. and Dunlap, R.A, Philos. Mag. B 69, 103 (1994)Google Scholar
18. Liu, JP., Liu, Y-, Luo, C., Shan, Z., and Sellmyer, D.J., J Appl. Phys. 81, 5644 (1997); J.P. Liu, C. Luo, Y. Liu, and D.J. Sellmyer, Appl. Phys. Left. 72, 483 (1998); JP. Liu, Y. Liu, R. Skomski, and D-J. Sellmyer,.1. Appl. Phys. (in press).Google Scholar