Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-26T04:01:41.894Z Has data issue: false hasContentIssue false

First principles study of interfacial adhesion: The Mo/MoSi2 Interface With and Without Impurities

Published online by Cambridge University Press:  15 February 2011

T. Hong
Affiliation:
Department of Materials Science and Eng., University of Michigan, Ann Arbor, MI 48109
J. R. Smith
Affiliation:
Physics Departments, General Motors Research and Development Center, Warren, MI 48090
D. J. Srolovitz
Affiliation:
Department of Materials Science and Eng., University of Michigan, Ann Arbor, MI 48109
Get access

Abstract

Adhesive properties of the Mo(001)//MoSi2 (001) heterophase interface with and without C, O, B, S, and Nb impurities are calculated using a first principles local density functional approach. The adhesive energy and interfacial strength of the impurity-free interface are 10% to 15% smaller than the respective values for cleavage along the (001) planes of Mo and MoSi2. All of the impurities were found to decrease the Mo//MoSi2 adhesive energy. The substitutional impurities S and Nb decrease the interfacial strength, while the interstitial impurities C, O, and B increase it. All of the impurities increase the interfacial spacing in proportion to their covalent radii. The impurity effects on adhesion may be described in terms of competing bonding and strain effects.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Griffith, A. A., Phil. Trans. R. Soc. A 221, 163 (1920).Google Scholar
2. Smith, J. R., Gay, J. G., and Arlinghaus, F. J., Phys. Rev. B 21, 2201 (1980).Google Scholar
3. Hong, T., Smith, J. R., Srolovitz, D. J., Gay, J. G., and Richter, R., Phys. Rev. B 45, 8775 (1992).Google Scholar
4. Banerjea, A. and Smith, J. R., Phys. Rev. B 37, 6632 (1988); see also P. Vinet, J. H. Rose, J. Ferrante, and J. R. Smith, J. Phys.: Condens. Matter 1, 1941 (1989).CrossRefGoogle Scholar
5. Intermetallic Matrix Composites II, edited by D., Miracle, J., Graves, and D., Anton (Materials Research Society, Pittsburgh, 1992).Google Scholar
6. Villars, P. and Calvert, L. D., Pearson's Handbook of Crystallographic Data for Intermetallic Phases (American Society for Metals, Metals Park, Ohio, 1985).Google Scholar
7. Kittel, C., Introduction to Solid State Physics, 6th ed. (Wiley, New York, 1986), p. 57.Google Scholar
8. Ghosh, A. K. (private communication).Google Scholar
9. Hartweck, W. G. and Grabke, H. J., Acta Metallurgica 29, 1237 (1981). See also H. J. Grabke, Steel Research 57, 180 (1986); See also H. J. Grabke, in Chemistry and Physics of Fracture, edited by R. M. Latanision and R. H. Jones, NATO ASI Series, Series F: Applied Sciences, No. 130 (Nijhoff, Boston, 1987), p.338.Google Scholar
10. Morinaga, M., Yukawa, N., Adachi, H., and Mura, T., J. Phys. F 17, 2147 (1987).Google Scholar
11. Covalent radii are taken to be the single-bond radii listed by Linus Pauling, The Nature of the Chemical Bond (Cornell University Press, Ithaca, 1960), pp. 225–8.Google Scholar
12. Hohenberg, P. and Kohn, W., Phys. Rev. 136, 864 (1964); W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).CrossRefGoogle Scholar
13. Vosko, S. H., Wilk, L., Nusair, M., Can. J. Phys. 58, 1700 (1980); D. M. Ceperley and B. J. Alder, Phys. Rev. Lett. 45. 566 (1980).CrossRefGoogle Scholar
14. Hong, T., Smith, J. R., Srolovitz, D. J. (to be published).Google Scholar
15. Hong, T., Smith, J. R., Srolovitz, D. J., Phys. Rev. B 47, 13615 (1993); T. Hong, J. R. Smith, D. J. Srolovitz Phys. Rev. Lett. 70, 615 (1993).Google Scholar
16. Feynman, R. P., Phys. Rev. 56, 340 (1939).Google Scholar