Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-27T03:14:01.870Z Has data issue: false hasContentIssue false

First Principles Study of Aluminum Deposition on Hydrogenterminated Si(100) Surface

Published online by Cambridge University Press:  22 February 2011

Carlos Sosa*
Affiliation:
Cray Research, Inc., 655 E lone Oak Dr., Eagan, MN 55121
Get access

Abstract

The deposition of Aluminum on Si(100) surface has been investigated using density functional methods. This has been accomplished by adoption of a Si9H16 cluster to model the H terminated Si(100) 1XI surface and Si9H15 cluster to model the surface with an unpaired electron. The predicted NLSD dissociation energy for the Si9H16 → Si9H15 + H is 86.3 ± 2.0 Kcal/Mol. This is in agreement with previous theoretical calculations on similar systems.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Tsubouchi, K. and Masu, K., J. Vac. Sci. Technol. A10, 856 (1992).Google Scholar
2. Tsubouchi, K., Masu, K., Sasaki, K., and Mikoshiba, N., Technical Digest of 1991 IEEE International Electron Devices Meeting, Washington, DC 1991 (IEEE, NY, 1992) pp. 269.Google Scholar
3. Tsubouchi, K. and Masu, K., Surface Chemical Cleaning and Passivation for Semiconductor Processing, San Francisco 1993, Materials Research Society Symposium Proceeding 315 (Materials Research Society, San Francisco, CA, 1993) pp. 59.Google Scholar
4. Nachtigall, P., Jordan, K. D., and Janda, K. C., J. Chem. Phys. 95, 8652(1991).Google Scholar
5. Sosa, C., Lee, C., Nachtigall, P., and Jordan, K. D., Surface Chemical Cleaning and Passivationfor Semiconductor Processing, San Francisco 1993, Materials Research Society Symposium Proceeding 315 (Materials Research Society, San Francisco, CA, 1993) pp. 273.Google Scholar
6. Nachtigall, P., Jordan, K. D., and Sosa, C., J. Phys. Chem. 97, 11666(1993)CrossRefGoogle Scholar
7. (a) Andzelm, J. and Wimmer, E., J. Chem. Phys. 96, 1280(1992); (b) J. Andzelm, in Density Functional Methods in Chemistry, edited by J. Labanowski and J. Andzelm (Springer-Verlag, NY, 1991) pp. 155.Google Scholar
8. Hohenberg, P. and Kohn, W., Phys. Rev. B136, 864(1964).Google Scholar
9. Kohn, W. and Sham, L. J., Phys. Rev. A140, 1133(1965).CrossRefGoogle Scholar
10. Sambe, H., and Felton, R.H., J. Chem. Phys. B62, 1122(1975).Google Scholar
11. Dunlap, B.I., Connolly, J.W.D., and Sabin, J.R., J. Chem. Phys. 71, 3396(1979).Google Scholar
12. Vosko, S. H., Wilk, L., and Nusair, M., Can. J. Phys. 58, 1200(1980).Google Scholar
13. (a) Becke, A. D., Phys. Rev. A38, 3098 (1988); (b) A. D. Becke, J. Chem. Phys. 88, 2547(1988).Google Scholar
14. Perdew, J. P., Phys. Rev. B33, 8822 (1986).Google Scholar
15. Godbout, N., Salahub, D. R., Andzelm, J., and Wimmer, E., Can. J. Chem. 70, 560(1992).CrossRefGoogle Scholar
16. Holland, B. W., Duke, C. D., and Paton, A., Surface Sci. 140, 1269(1984).CrossRefGoogle Scholar