Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-26T04:09:49.223Z Has data issue: false hasContentIssue false

First Principles Predictions of Intrinsic Defects in Aluminum Arsenide, AlAs

Published online by Cambridge University Press:  20 May 2011

Peter A. Schultz*
Affiliation:
Advanced Device Technologies Department Sandia National Laboratories, Albuquerque, NM 87185, U.S.A.
Get access

Abstract

The structures, energies, and energy levels of a comprehensive set of simple intrinsic point defects in aluminum arsenide are predicted using density functional theory (DFT). The calculations incorporate explicit and rigorous treatment of charged supercell boundary conditions. The predicted defect energy levels, computed as total energy differences, do not suffer from the DFT band gap problem, spanning the experimental gap despite the Kohn-Sham eigenvalue gap being much smaller than experiment. Defects in AlAs exhibit a surprising complexity—with a greater range of charge states, bistabilities, and multiple negative-U systems—that would be impossible to resolve with experiment alone. The simulation results can be used to populate defect physics models in III-V semiconductor device simulations with reliable quantities in those cases where experimental data is lacking, as in AlAs.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Pilcher, P., Intrinsic Point Defects, Impurities, and Their Diffusion in Silicon (Springer-Verlag, Wien 2004).Google Scholar
2. Sham, L.J. and Schlüter, M., Phys. Rev. Lett. 51, 1888 (1983); Phys. Rev.B 32, 3883 (1985).Google Scholar
3. Schultz, P.A. and von Lilienfeld, O.A., Modelling Simul. Mater. Sci. Eng. 17, 084007 (2009).Google Scholar
4. Schultz, P.A., SeqQuest code (unpublished). See http:/dft.sandia.gov/Quest.Google Scholar
5. Perdew, J.P. and Zunger, A., Phys. Rev. B 23, 5048 (1981).Google Scholar
6. Perdew, J.P., Burke, K., and Ernzerhof, M., Phys. Rev. Lett. 77, 3865 (1996).Google Scholar
7. von Lilienfeld, O.A. and Schultz, P.A., Phys. Rev. B 77, 115202 (2008).Google Scholar
8. Hamann, D.R., Phys. Rev. B 40, 2980 (1989).Google Scholar
9. Leavitt, R.P. and Towner, F.J., Phys. Rev. B 48, 9154 (1993).Google Scholar
10. Greene, R.G., Luo, H., and Ruoff, A.L., Phys. Rev. Lett. 72, 2045 (1994).Google Scholar
11. Mead, C.A. and Spitzer, W.G., Phys. Rev. Lett. 11, 358 (1963).Google Scholar
12. Sham, L.J. and Kohn, W., Phys. Rev. 145, 561 (1966).Google Scholar
13. Schultz, P.A., Phys. Rev. Lett. 96, 246401 (2006).Google Scholar
14. Mattsson, A.E., Schultz, P.A., Mattsson, T.R., Leung, K., and Desjarlais, M.P., Modelling Simul. Mater. Sci. Eng. 13, R1 (2005).Google Scholar
15. Schultz, P.A., Phys. Rev. B 60, 1551 (1999);Google Scholar
16. Schultz, P.A., Phys. Rev. Lett. 84, 1942 (2000).Google Scholar
17. Jost, W., J. Chem. Phys. 1, 466 (1933).Google Scholar
18. Lento, J., Mozos, J.-L., and Nieminen, R.M., J. Phys. Condens. Matter 14, 2637 (2002).Google Scholar
19. Fern, R.E. and Ruoff, A.L., J. Appl. Phys. 42, 3499 (1971).Google Scholar
20. Zhang, S.B. and Northrup, J.E., Phys. Rev. Lett. 67, 2339 (1991).Google Scholar
21. Dabrowski, J. and Scheffler, M., Phys. Rev. Lett. 60, 2183 (1988).Google Scholar
22. Chadi, D.J. and Chang, K.J., Phys. Rev. Lett. 60, 2187 (1988).Google Scholar
23. Chadi, D.J., Phys. Rev. B 68, 193204 (2003).Google Scholar