Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-27T03:04:50.101Z Has data issue: false hasContentIssue false

Fim/Iap/Tem Studies of Ion Implanted Nickel Emitters

Published online by Cambridge University Press:  25 February 2011

S. D. Walck
Affiliation:
Department of Materials Science and Engineering University of Florida, Gainesville, FL 32611
J. J. Hren
Affiliation:
Department of Materials Science and Engineering University of Florida, Gainesville, FL 32611
Get access

Abstract

Accurate depth profiling of implanted hydrogen and its isotopes in metals is extremely important. Field ion microscopy and atom-probe techniques provide the most accurate depth profiling analytical method of any available. In addition, they are extremely sensitive to hydrogen. This paper reports our early work on hydrogen trapping at defects in metals using the Field Ion Microscope/Imaging Atom Probe (FIM/IAP). Our results deal primarily with the control experiments required to overcome instrumental difficulties associated with in situ implantation and the influence of a high electric field. Transmission Electron Microscopy (TEM) has been used extensively to independently examine the influence of high electric fields on emitters.

Type
Research Article
Copyright
Copyright © Materials Research Society 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Panitz, J. A. Progress Surf Sci, 8, 219 (1978).10.1016/0079-6816(78)90002-3CrossRefGoogle Scholar
2. Seidman, D. N., J Phys F Metal Physics, 3, 393 (1973).10.1088/0305-4608/3/2/008CrossRefGoogle Scholar
3. Wei, C., Seidman, D. N., Appl Phys Letters, 34, 622 (1979).10.1063/1.90639CrossRefGoogle Scholar
4. Newkirk, J. W., Walck, S. D., Jones, R. H., Hren, J. J., Proc. of 42nd Ann. Meeting of EMSA, ed., Bailey, G. W., San Francisco Press (1984).Google Scholar
5. Myers, S M, Picraux, S T, Stolz, R E, J Appl Phys, 50, 5710 (1979).10.1063/1.326761CrossRefGoogle Scholar
6. Myers, S M, Picraux, S T, Stolz, R E, Appl Phys Lett, 37, 168 (1980).10.1063/1.91811CrossRefGoogle Scholar
7. Besenbacher, F, Bottiger, J, Myers, S M, J Appl Phys, 53, 3536 (1982).10.1063/1.331132CrossRefGoogle Scholar
8. Besenbacher, F, Bottiger, J, Myers, S M, J Appl Phys, 53, 3547 (1982).10.1063/1.331133CrossRefGoogle Scholar
9. Myers, S. M., Follstaedt, D. M., Besenbacher, F., Bottiger, J., J Applied Phys, 53, 8734 (1982).10.1063/1.330473CrossRefGoogle Scholar
10. Van Swygenhoven, H., Stals, L. M., Knuyt, G., Rad Effects Lett, 76, 29 (1983).10.1080/01422448308209608CrossRefGoogle Scholar
11. Bowkett, K. M., Smith, D. A., Field Ion Microscopy, Defects in Crystalline Solids, North Holland, Amsterdam, p. 38 (1970).Google Scholar