Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-28T08:03:35.287Z Has data issue: false hasContentIssue false

Field-Effect Mobility and Morphology Study in Amorphous Films of Symmetric and Unsymmetrical Spiro-Linked Compounds

Published online by Cambridge University Press:  01 February 2011

Tobat P. I. Saragi
Affiliation:
Macromolecular Chemistry and Molecular Materials Department of Physics, University of Kassel Heinrich-Plett-Strasse 40, D 34109 Kassel, Germany
Robert Pudzich
Affiliation:
Macromolecular Chemistry and Molecular Materials Department of Physics, University of Kassel Heinrich-Plett-Strasse 40, D 34109 Kassel, Germany
Thomas Fuhrmann
Affiliation:
Macromolecular Chemistry and Molecular Materials Department of Physics, University of Kassel Heinrich-Plett-Strasse 40, D 34109 Kassel, Germany
Josef Salbeck
Affiliation:
Macromolecular Chemistry and Molecular Materials Department of Physics, University of Kassel Heinrich-Plett-Strasse 40, D 34109 Kassel, Germany
Get access

Abstract

We have investigated the field-effect mobility of three kinds of low molecular weight spirolinked compounds, namely 2,2',7,7'-tetrakis (diphenylamino)-9,9'-spirobifluorene (spiro-TAD), 2,2',7,7'-tetrakis(biphenyl-4-yl)-9,9'-spirobifluorene (spiro-6φ) and 2,7-bis-(N,N-diphenylamino)- 2',7'-bis-(biphenyl-4-yl)-9,9'-spirobifluorene (spiro-X2). The field-effect mobilities of these materials in the saturation region are 8 x 10-4 cm2V-1s-1, 5 x 10-5 cm2V-1s-1 and 4 x 10-4 cm2V-1s-1 respectively. The atomic force microscopy images show that films prepared from these materials are amorphous with a very smooth surface and the limited field-effect mobility is due to the intrinsic behaviour of amorphous materials.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Salbeck, J. Ber.Bunsenges. Phys. Chem. 100, 1667 (1996).Google Scholar
2. Salbeck, J. in Proc. Symp. Inorg. Org. Electroluminescence (EL 1996), Edited by Mauch, R H, and Gumlich, H. E.), Wissenschaft und Technik Berlin, 243 (1996).Google Scholar
3. Salbeck, J. Yu, N. Bauer, J. Weissörtel, F., and Bestgen, H. Synthetic Metals 91, 209 (1997).Google Scholar
4. Spreitzer, H. Schenk, H. Salbeck, J. Weissortel, F. Riel, H. and Riess, W. SPIE Proceeding 3797, 316324 (1999).Google Scholar
5 Salbeck, J. Weissörtel, F., and Bauer, J. Macromolecular Symposia 125, 121 (1997).Google Scholar
6. Weissörtel, F., “Synthese und Characterisierung spiroverknüpfter Niedermolekularer Gläser für optoelektronische Anwendungen”, PhD thesis University of Regensburg, Germany 1999.Google Scholar
7. Naito, K. and Miura, A., J. Phys. Chem. 97, 6240 (1993).Google Scholar
8. Pudzich, R. Salbeck, J. unpublished.Google Scholar
9. Sze, S. M.. Physics of Semiconductor Devices. 2nd Edition. John Wiley & Sons pp.442 (1991).Google Scholar
10. Saragi, T.P.I., Salbeck, J. unpublished.Google Scholar
11. Brown, A.R. Leeuw, D.M. de, Havinga, E.E. and Pomp, A. Synthetic Metals 68, 6570 (1994).Google Scholar
12. Biscarini, F. Samori, P. Lauria, A. Ostojo, P. Zamboni, R. Taliani, C. Viville, P. Lazaroni, R. and Bredas, J. L. Thin Solid Films 284-285, 439443 (1996).Google Scholar
13. Bässler, H., in: “Disorder effects on relaxation processes”, edRichert, s. R. Blumen, A. Springer Berlin, 1994.Google Scholar
14. Heun, S. Borsenberger, P.M. Chem.Phys. 200, 245 (1995).Google Scholar
15. Fong, H.H. Lun, K.C. So, S.K. Chem.Phys.Lett. 353, 407 (2002).Google Scholar
16. Bach, U. Cloedt, K. D. Spreitzer, H. and Grätzel, M., Advanced Materials 12, 1060 (2000).Google Scholar