Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-27T02:45:59.200Z Has data issue: false hasContentIssue false

Field emission characteristics of carbon nanotubes synthesized by C3H4 and NH3 gases

Published online by Cambridge University Press:  01 February 2011

Taewon Jeong
Affiliation:
The National Creative Research Initiatives, Center for Electron Emission Source, Samsung Advanced Institute of Technology, P.O. Box 111, Suwon, 440-600, Korea
Jae Hee Han
Affiliation:
Center for Nanotubes and Nanostructured Composite, Sungkyunkwan University, Suwon 440-746, Korea
Whikun Yi
Affiliation:
The National Creative Research Initiatives, Center for Electron Emission Source, Samsung Advanced Institute of Technology, P.O. Box 111, Suwon, 440-600, Korea
SeGi Yu
Affiliation:
The National Creative Research Initiatives, Center for Electron Emission Source, Samsung Advanced Institute of Technology, P.O. Box 111, Suwon, 440-600, Korea
Jeonghee Lee
Affiliation:
The National Creative Research Initiatives, Center for Electron Emission Source, Samsung Advanced Institute of Technology, P.O. Box 111, Suwon, 440-600, Korea
Jungna Heo
Affiliation:
The National Creative Research Initiatives, Center for Electron Emission Source, Samsung Advanced Institute of Technology, P.O. Box 111, Suwon, 440-600, Korea
Chang Soo Lee
Affiliation:
The National Creative Research Initiatives, Center for Electron Emission Source, Samsung Advanced Institute of Technology, P.O. Box 111, Suwon, 440-600, Korea
Ji-Beom Yoo
Affiliation:
Center for Nanotubes and Nanostructured Composite, Sungkyunkwan University, Suwon 440-746, Korea
J. M. Kim
Affiliation:
The National Creative Research Initiatives, Center for Electron Emission Source, Samsung Advanced Institute of Technology, P.O. Box 111, Suwon, 440-600, Korea
Get access

Abstract

Using a gas mixture of propyne (C3H4) and ammonia (NH3) as a carbon precursor, we have successfully synthesized multiwalled carbon nanotubes (CNTs) by the direct current (dc) plasma enhanced chemical vapor deposition (PECVD) onto Co-sputtered glass at 550°C. As the flow ratio of NH3 to C3H4 in the mixture gas increased, the crystallinity and alignment of CNTs were improved. In addition, the field emission characteristics of CNTs were also improved. the turn-on voltage became lower, and the current density and the field enhancement factor were more increasing. Raman spectroscopy and scanning electron microscopy were utilized to confirm the effect of the gas flow ratio on CNTs. Therefore, the gas flow ratio was found to be one of important factors to govern the crystalline and field emission characteristics of CNTs. The growth mechanism of CNTs using a C3H4 gas is under investigation with the possibility that three carbon atoms in a C3H4 molecule is converted directly to a hexagon of a CNT by combining two molecules.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Heer, W. A. de, Chaterlain, A., and Ugarte, D., Science 270, 1179, (1995).Google Scholar
2. Collins, P. G. and Zettle, A., Phys. Rev. B 55, 9391, (1997).Google Scholar
3. Wang, Q. H., Setlur, A. A., Lauerhaas, J. M., Dai, J. Y., Seelig, E. W., and Chang, R. P. H., Appl. Phys. Lett. 73, 918, (1998).Google Scholar
4. Choi, W. B., Chung, D. S., Kang, J. H., Kim, H. Y., Jin, Y. W., Han, I. T., Lee, Y. H., Jung, J. E., Lee, N. S., Park, G. S., and Kim, J. M., Appl. Phys. Lett. 75, 375, (2000).Google Scholar
5. Dean, K. A. and Chalamala, B. R., Appl. Phys. Lett. 76, 375, (2000).Google Scholar
6. Choi, Y. S., Kang, J. H., Park, Y. J., Choi, W. B., Lee, C. J., Jo, S. H., Lee, C. G., You, J. H., Jung, J. E., Lee, N. S., and Kim, J. M., Diamond. Relat. Mater. 10, 1705, (2001).Google Scholar
7. Collins, P. G., Hersam, M., Arnold, M., Martel, R., and Avouris, Ph., Phys. Rev. Lett. 86, 3128, (2001).Google Scholar
8. Bethume, D. S., Kiang, C. H., deVries, M. S., Gorman, G., Svoy, R., Vazquez, J., and Beyers, R., Nature (London) 363, 605, (1993).Google Scholar
9. Thess, A. et al., Science 273, 483, (1996).Google Scholar
10. Terrones, M. et al., Nature (London) 388, 52, (1997).Google Scholar
11. Li, W. Z., Xie, S. S., Qain, L. X., Chang, B. H., Zou, B. S., Zhou, W. Y., Zhao, R. A., and Wang, V., Science 274, 1701, (1996).Google Scholar
12. Ren, Z. F., Huang, Z. P., Xu, J. W., Wang, J. H., Bush, P., Siegal, M. P., and Provencio, P. N., Science 282, 1105, (1998).Google Scholar
13. Dai, H., Rinzler, A. G., Nikolaev, P., Thess, A., Colbert, D. T., and Smalley, R. E., Chem. Phys. Lett. 260, 471, (1996).Google Scholar
14. Hafner, J. H., Bronikowski, M. J., Azamian, B. R., Nikolaev, P., Rinzler, A. G., Colbert, D. T., and Smalley, R. E., Chem. Phys. Lett. 296, 195, (1998).Google Scholar
15. Pan, Z. W., Xie, S. S., Chang, B. H., Sun, L. F., Zhou, W. Y., Wang, G., Chem. Phys. Lett. 299, 97, (1999).Google Scholar
16. Chhowlla, M., Teo, K. B. K., Ducati, C., Rupesinghe, M. L., Amaratunga, G. A. J., Ferrari, A. C., Roy, D., Robertson, J., and Milne, W. I., J. Appl. Phys. 90, 5308, (2001).Google Scholar
17. Jung, M. J., Eun, K. Y., Lee, J. K., Baik, Y. T., Lee, K. R. and Park, J. W., Diamond. Relat. Mater. 10, 1235, (2001).Google Scholar
18. Fowler, R. H. and Nordheim, L. W., Proc. R. Soc., London A 119, 173, (1928).Google Scholar
19. Gomer, R., Field Emission and Field Ionization (Harvard University, Press, Cambridge, MA, 1961), Chaps. 1-2.Google Scholar