Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-03T08:26:51.485Z Has data issue: false hasContentIssue false

Fibers of Conducting Polymers: High Electrical Conductivity Combined with Attractive Mechanical Properties

Published online by Cambridge University Press:  25 February 2011

Alejandro Andreatta
Affiliation:
Materials Department
S. Tokito
Affiliation:
Department of Materials Science and Technology, Kyushu University, Kasuga-shi, Fukuoka 816, JAPAN,
P. Smith
Affiliation:
Materials Department Chemical and Nuclear Engineering Department
A. J. Heeger
Affiliation:
Materials Department Physics Department
Get access

Abstract

We present a summary of our recent results on the electrical and mechanical properties of fibers made from poly(2,5-dimethoxy-p-phenylene vinylene), PDMPV and poly(2,5-thienylene vinylene), PTV, using the precursor polymer methodology, and from polyaniline, PANI, using the method of processing as polyblends with poly-(p-phenylene terephthalamide), PPTA, from sulfuric acid. The solubility of both PANI and PPTA in H2SO4 presents a unique opportunity for co-dissolving and blending PANI and PPTA to exploit the excellent mechanical properties of PPTA and the electrical conductivity of PANI; we summarize the electrical and mechanical properties of such composite fibers. For PDMPV and PTV fibers, we find a strong correlation between the conductivity and the tensile strength (and/or modulus), and we show from basic theoretical concepts that this relationship is an intrinsic feature of conducting polymers.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kivelson, S. and Heeger, A.J., Synth. Met. 22, 37 (1988).Google Scholar
2. Termonia, Y. and Smith, P., in “The Path to High Modulus Polymers with Stiff and Flexible Chains”, edited by Zachariades, A.E. and Porter, R.S. (Marcel Dekker, New York, 1988) p. 321.Google Scholar
3. Heeger, A.J., Faraday Discuss. Chem. Soc. 88, 1 (1989).Google Scholar
4. a. Jen, K.Y., Oboodi, R. and Elsenbaumer, R., Polym. Materials: Sci. Eng. 53, 79 (1985).Google Scholar
b. Nowak, M.J., Rughooputh, S.D.D., Hotta, S., and Heeger, A.J., Macromolecules, 20, 212 (1987).CrossRefGoogle Scholar
c. Rughooputh, S.D.D., Hotta, S., Heeger, A.J. and Wudl, F., J. Polym. Sci., Polym. Phys. Ed. 25, 1071 (1987).Google Scholar
d. Nowak, M.J., Spiegel, D., Hotta, S., Heeger, A.J. and Pincus, P., Macromolecules, 22, 2917 (1989).Google Scholar
e. Sato, M., Tanaka, S. and Kaeriyama, K., J. Chem. Soc. Chem. Commun., 295. 873 (1986).Google Scholar
5. Edwards, J.H. and Feast, W.J., Polym. Commun., 21, 595 (1980).Google Scholar
6. a. Gagnon, D.R., Capistran, J.D., Karasz, F.E. and Lenz, R.W., Polym. Bull., 12, 93 (1984).Google Scholar
b. Murase, I., Ohnishi, T. and Hirooka, M., Polym. Commun., 25, 327 (1984).Google Scholar
7. Momii, T., Tokito, S., Tsutsui, T. and Saito, S., Chem. Lett., 1201 (1988).Google Scholar
8. Yamada, S., Tokito, S., Tsutsui, T. and Saito, S., J. Chem. Sci., Chem. Commun., 1448 (1987).CrossRefGoogle Scholar
9. Tokito, S., Murata, H., Tsutsui, T. and Saito, S., Polymer, to be published (1989).Google Scholar
10. Murase, I., Ohnishi, T., Taniguchi, T. and Hirooka, M., Polym. Commun., 28, 229 (1987).Google Scholar
11. Andreatta, A., Cao, Y., Chiang, J.C., Heeger, A.J. and Smith, P., Synth. Met., 26, 383 (1988).CrossRefGoogle Scholar
12. Cao, Y., Andreatta, A., Heeger, A.J. and Smith, P., Polymer., (in press), (1989).Google Scholar
13. Andreatta, A., Heeger, A.J. and Smith, P., Polym. Commun., (in press), (1989).Google Scholar
14. Blades, H., U. S. Pat. 3,767,756 (1973), 3,869,429 (1975), 3,869,430 (1975).Google Scholar
15. Lewin, M. and Preston, J., ed., Handbook of Fiber Science and Technology. (Marcel Dekker, Inc., New York , NY, 1985), Vol III, part A, chapter 9.Google Scholar
16. Tokito, S., Smith, P. and Heeger, A.J., Polymer (in press).Google Scholar
17. Tokito, S., Smith, P. and Heeger, A.J., Synth. Met. (in press).Google Scholar
18. Zallen, R., The Physics of Amorphous Solids. (John Wiley, New York, 1983), Ch.4.Google Scholar
19. Hotta, S., Rughooputh, S.D.D.V. and Heeger, A.J., Synth. Met. 21, 79 (1987).CrossRefGoogle Scholar
20. Balberg, I., Anderson, C.H., Alexander, S. and Wagner, N., Phys. Rev.B 30. 3933 (1984).Google Scholar
21. a. Sinclair, M., Lim, K.C. and Heeger, A.J., Phys. Rev. Lett. 53, 3933 (1985).Google Scholar
b. Kapitulnik, A., Lim, K.C., Casalnuovo, S.A. and Heeger, A.J., Macromolecules, 19, 676 (1986).Google Scholar
22. Machado, J.M. and Karasz, F.E., Polym. Preprints, 30, 154 (1989).Google Scholar
23. Akagi, K., Suezaki, M., Shirakawa, H., Kyotani, H., Shimomura, M. and Tanabe, Y., Synthetic Metals, 28, D1 (1989).Google Scholar