Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-26T04:05:06.071Z Has data issue: false hasContentIssue false

FIB-deposited carbon-based superconducting nanowires with Tc ˜ 7 K

Published online by Cambridge University Press:  31 January 2011

Pashupati Dhakal
Affiliation:
[email protected], Boston College, Department of Physics, Chestnut Hill, Massachusetts, United States
Gregory McMahon
Affiliation:
[email protected], Boston College, Physics, Chestnut Hill, Massachusetts, United States
Liam Norris
Affiliation:
[email protected], Boston College, Physics, Chestnut Hill, Massachusetts, United States
Jeong Il Oh
Affiliation:
[email protected], Boston College, Physics, Chestnut Hill, Massachusetts, United States
Michael J. Naughton
Affiliation:
[email protected], Boston College, Physics, Chestnut Hill, Massachusetts, United States
Get access

Abstract

We have fabricated carbon-containing nanowires by a gallium focused ion beam-induced deposition process from the precursor phenanthrene, C14H10. The electrical conductivity of the nanowires is only weakly temperature dependent below 300K, and reveals a superconducting state below Tc ˜ 7 K. We have measured the temperature dependence of the resistive upper critical field Hc2(T), and from those data, estimate the zero temperature critical field and coherence length to be 8.8 T and 6.1 nm, respectively. The Tc of this material is approximately 40% higher than that in any other FIB/direct write nanowire, such as those based on W(Ga), and thus offers the possibility of fabricating superconducting direct-write nanostructures that function at liquid helium temperature.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Giannuzzi, L. and Stevie, F.A., Introduction of Focus Ion Beam: Instrumentation, Theory, Techniques and Practice (Springer, 1st Ed, 2004).Google Scholar
2 Melngailis, J., J. Vac. Sci. Technol. B 5, 469 (1987).Google Scholar
3 Nagamachi, S., Yamakage, Y., Maruno, H., Ueda, M., Sugimato, S., Asari, M., and Ishokawa, J., Appl. Phys. Lett. 62, 2143 (1993).Google Scholar
4 Koops, H.W.P., Schossler, C., Kaya, A., and Weber, M., J. Vac. Sci. Technol. B 14, 471 (1996).Google Scholar
5 Langfischer, B., Basnar, H., Hutter, H., Bertagnolli, E., J. Vac. Sci. Technol. A 20, 1408 (2002).Google Scholar
6 Bird, J. P., Rotkina, L., and Bennett, P. A., Appl. Phys. Lett. 82, 802 (2003).Google Scholar
7 Utke, I., Luisier, A., Hoffmann, P., Laub, D., Buffat, P.A., Appl. Phys. Lett. 81, 3245 (2003).Google Scholar
8 Takeguchi, M., Shimojo, M., Furuya, K., Jpn. J. Appl. Phys. 44, 5631 (2005).Google Scholar
9 Sadki, E.S., Ooi, S., and Hirata, K., Appl. Phys. Lett. 85, 6206 (2004).Google Scholar
10 Luxmoore, I.J., Ross, I.M., Cullis, A.G., Fry, P.W., Orr, J., Buckle, P.D., and Jefferson, J.H., Thin Solid Films 515, 6791 (2007).Google Scholar
11 Li, W., Fenton, J.C., Wang, Y., McComb, D.W., and Warburton, P.A., J. Appl. Phys. 104, 093913 (2008).Google Scholar
12 Guillamón, I., Suderow, H., Vieira, S., Fernández-Pacheco, A., Sesé, J., Córdoba, R., Teresa, J.M. De and Ibarra, M.R., New Journal of Physics 10, 093005 (2008).Google Scholar
13 Shimoda, H., Iwasa, Y., and Miyamoto, Y., Maniwa, Y. and Mitani, T., Phys. Rev. B 54, R15653 (1996).Google Scholar
14 Takesue, I., Haruyama, J., Kobayashi, N., Chiashi, S., Maruyama, S., Sugai, T., and Shinohara, H., Phys. Rev. Lett. 96, 057001 (2006).Google Scholar
15 Jarrett, S.M., Phys. Rev. 133, A111 (1964).Google Scholar
16 Jarrett, S.M. and Franken, P.A., J. Opt. Soc. Am. 55, 1603 (1965).Google Scholar
17 Davidovits, P. and Stern, W.A., Appl. Phys. Lett. 6, 20 (1965).Google Scholar
18 Jaeger, H.M., Haviland, D.B., Goldman, A.M., and Orr, B.G., Phys. Rev. B 34, 4920 (1986).Google Scholar