Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-27T02:30:08.467Z Has data issue: false hasContentIssue false

FIB Precise Prototyping and Simulation

Published online by Cambridge University Press:  01 February 2011

Philipp M. Nellen
Affiliation:
[email protected], EMPA, Electronics/Metrology/Reliability, Ueberlandstrasse 129, Duebendorf, CH-8600, Switzerland, +41 44 823 43 53, +41 44 823 40 54
Victor Callegari
Affiliation:
[email protected], EMPA, Electronics/Metrology/Reliability, Ueberlandstrasse 129, Duebendorf, CH-8600, Switzerland
Juergen Hofmann
Affiliation:
[email protected], EMPA, Electronics/Metrology/Reliability, Ueberlandstrasse 129, Duebendorf, CH-8600, Switzerland
Elmar Platzgummer
Affiliation:
[email protected], IMS Nanofabrication GmbH, Schreygasse 3, Wien, A-1020, Austria
Christof Klein
Affiliation:
[email protected], IMS Nanofabrication GmbH, Schreygasse 3, Wien, A-1020, Austria
Get access

Abstract

We present a closed approach towards direct microstructuring and high precision prototyping with focused ion beams (FIB). The approach uses the simulation of the involved physical effects and the modeling of geometry/topography during milling while the ion beam is steered over the surface. Experimental examples are given including the milling of single spots, trenches, rectangles, and Fresnel lenses. Good agreements between simulations and experiments were obtained. The developed procedures can also be applied to other FIB prototyping examples.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Orloff, J., Utlaut, M., Swanson, L., ‘High resolution focus ion beams’, Kluwer, 2003.Google Scholar
[2] Giannuzi, L. A., Stevie, F. A. (eds.), ‘Introduction to focused ion beams (instrumentation, techniques, and practice)’, Springer Science+Business Media, Inc., 2005.Google Scholar
[3] Gierak, J., et. al, ‘Exploration of the ultimate patterning potential of focused ion beams’, J Microlith Microfab, 2006, 78–79, 266.Google Scholar
[4] Sigmund, P., ‘Theory of Sputtering I. Sputtering Yield of Amorphous and Polycrystalline Targets’, Phys. Rev., 1969, 184, 383.Google Scholar
[4] Eckstein, W., ‘Computer simulation of ion-solid interactions’, Springer, 1991.Google Scholar
[5] Ziegler, J. F., Biersack, J. P., Littmark, U., ‘The stopping and range of ions in solids’, Pergamon Press, 1985.Google Scholar
[6] http://www.srim.org/Google Scholar
[7] Yamamura, Y., Mossner, C., Oechsner, H., ‘Angular-Distributions of Sputtered Atoms from Ion-Bombarded Surfaces’, Radiat Eff Defects S, 1987, 105, 31.Google Scholar
[8] Moeller, W., Eckstein, W., Biersack, J.P., ‘TRIDYN - Binary Collision Simulation of Atomic Collisions and Dynamic Composition Changes in Solids’, Comput. Phys. Commun., 1988, 51, 355.Google Scholar
[9] Ishitani, T., Kaga, H., ‘Calculation of Local Temperature Rise in Focused-Ion-Beam Sample Preparation’, J Electron Microsc, 1995, 44, 331.Google Scholar
[10] Robinson, M. T., Torrens, I. M., ‘Computer simulation of atomic-displacement cascades in solids in the binarycollision approximation’, Phys. Rev. B, 1974, 9, 5008.Google Scholar
[11] Boxleitner, W., Hobler, G., ‘FIBSIM - dynamic Monte Carlo simulation of compositional and topography changes caused by focused ion beam milling’, Nucl Instrum Meth B, 2001, 180, 125.Google Scholar
[12] Urbassek, H. M., ‘Molecular-dynamics simulation of sputtering’, Nucl Instrum Meth B, 1997, 122, 427.Google Scholar
[13] Samela, J., Kotakoski, J., Nordlund, K., Keinonen, J., ‘A quantitative and comparative study of sputtering yields in Au’, Nucl Instrum Meth B, 2005, 239, 331.Google Scholar
[14] http://Geant4.web.cern.ch/Geant4/Google Scholar
[15] Mendenhall, M. H., Weller, R. A., ‘An algorithm for computing screened Coulomb scattering in GEANT4’, Nucl Instrum Meth B, 2005, 227, 3, 420.Google Scholar
[16] Lenz, W.., ‘Ueber die Anwendbarkeit der statistischen Methode auf Ionengitter’, Z f Physik, 1932, 77, 713.Google Scholar
[17] Platzgummer, E., Biedermann, A., Langfischer, H., Eder-Kapl, S., Kuemmel, M., Cernusca, S., Loeschner, H., Lehrer, C., Frey, L., Lugstein, A., Bertagnolli, E., Microelectron Eng, 2006, 83, 936.Google Scholar
[18] Mueller, K. P., Weigmann, U., Burghause, H., ‘Simulation of focused ion beam milling’, Microelectron Eng, 1986, 5, 481.Google Scholar
[19] Vasile, M. J., Xie, J. S., Nassar, R., ‘Depth control of focused ion-beam milling from a numerical model of the sputter process’, J Vac Sci Technol B, 1999, 17, 3085.Google Scholar
[20] Katardjiev, I. V., Carter, G., Nober, M. J., Smith, R., J Vac Sci Technol A, 1988, 6, 2443.Google Scholar
[21] Ward, J. W., Kubena, R. L., Utlaut, M. W., ‘Transverse Thermal Velocity Broadening of Focused Beams from Liquid-Metal Ion Sources’, J Vac Sci Technol B, 1988, 6, 2090.Google Scholar
[22] Nellen, P. M., Callegari, V., Bronnimann, R., ‘FIB-milling of photonic structures and sputtering simulation’, Microelectron Eng, 2006, 83, 1805.Google Scholar
[23] Nellen, P. M., Bronnimann, R., ‘Milling Micro-Structures Using Focused Ion Beams and its Application to Photonic Components’, Meas Sci Technol, 2006, 17, 943.Google Scholar