Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-27T02:42:00.675Z Has data issue: false hasContentIssue false

Ferroelectric Polymers with Chemically Tunable Dielectric Constants

Published online by Cambridge University Press:  01 February 2011

Yingying Lu
Affiliation:
The Pennsylvania State University, Materials Science and Engineering, 319 Steidle Building, University Park, PA, 16802, United States, 814-863-0042, 814-865-2917
Jason Claude
Affiliation:
[email protected], The Pennsylvania State University, Materials Science and Engineering, University Park, PA, 16802, United States
Kun Li
Affiliation:
[email protected], The Pennsylvania State University, Materials Science and Engineering, University Park, PA, 16802, United States
Qiming Zhang
Affiliation:
[email protected], The Pennsylvania State University, Electrical Engineering, University Park, PA, 16802, United States
Qing Wang
Affiliation:
[email protected], The Pennsylvania State University, Materials Science and Engineering, University Park, PA, 16802, United States
Get access

Abstract

We present a modular approach toward poly(vinylidene fluoride) based ferroelectric polymers with high dielectric constants and energy densities. This strategy is based on a two-step reaction including the co-polymerization of vinylidene fluoride (VDF) and chlorotrifluoroethylene (CTFE) and a subsequent hydrogenation reaction. Due to the similar reactivity of VDF and CTFE in free radical polymerization and quantitative yield of dechlorination reaction, the chemical compositions of the resulting terpolymers can be precisely controlled, leading to tunable Curie temperatures and dielectric constants. A library of the ferroelectric polymers with dielectric constants varying from 11 to 50 measured at 1 kHz and room temperature has been prepared. The structural characteristics including microstructure, chain conformation, and crystallinity of the polymers have been carefully elucidated as a function of the chemical composition by 1H and 19F NMR, Fourier transform infrared spectroscopy, and wide angle X-ray diffraction. The influence of the polymer compositions on thermal transitions and dielectric constants has also been investigated.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Nalwa, H., Ed. Handbook of Low and High Dielectric Constant Materials and Their Applications, (Academic Press: London, 1999).Google Scholar
2. Müller, K., Paloumpa, I., Henkel, K. and Schmeisser, D., J. Appl. Phys. 98, 056104 (2005).Google Scholar
3. Naber, R. C. G., Tanase, C., Blom, P. W. M., Gelinck, G. H., Marsman, A. W., Touwslager, F. J., Setayesh, S. and de Leeuw, D. M., Nat. Mater. 4, 243 (2005).Google Scholar
4. Lovinger, A. J., Science 220, 1115 (1983).Google Scholar
5. Nalwa, H. S., Ed. Ferroelectric Polymers, (Marcel Dekker: New York, 1995).Google Scholar
6. Zhang, Q. M., Bharti, V. and Zhao, X., Science, 280, 2102 (1998).Google Scholar
7. Tashiro, K., Nishimura, S. and Kobayashi, M., Macromolecules 21, 2463 (1988).Google Scholar
8. Ikeda, S., Suzaki, H. and Nakami, S., Jpn. J. Appl. Phys. 31, 1112 (1992).Google Scholar
9. Lovinger, A., Macromolecules 18, 910 (1985).Google Scholar
10. FuruKawa, T., Johnson, G. E., Bair, H. E., Tajitsu, Y., Chiba, A. and Fukada, E., Ferroelectrics 32, 61 (1981).Google Scholar
11. Furukawa, T.; Date, M.; Fukada, E.; Tajitsu, Y.; Chiba, A. Jpn. J. Appl. Phys. 19, L109 (1980).Google Scholar
12. Yagi, T., Tatemoto, M. and Sake, J., Polym. J. 12, 209(1980).Google Scholar
13. Casalini, R.; Roland, C. M. Appl. Phys. Lett. 79, 2627 (2001).Google Scholar
14. Yuki, T.; Ito, S.; Koda, T.; Ikeda, S. J. Appl. Phys. 37, 5372 (1998).Google Scholar
15. Bobnar, V.; Vodopivec, B.; Levstik, A.; Cheng, Z.; Zhang, Q. M. Phys. Rev. B 67, 094205/1 (2003).Google Scholar
16. Xu, H., Cheng, Z., Olson, D., Mai, T., Zhang, Q. M. and Kavarnos, G., Appl. Phys. Lett. 78, 2360 (2001).Google Scholar
17. Sakagami, T., Arakawa, N., Teramoto, Y. and Nakamura, K., U. S. Patent 4,554,335, 1985.Google Scholar
18. Inukai, H., Kawai, N., Kitahara, T., Kai, S. and Kubo, M., U. S. Patent 5,087,679, 1992.Google Scholar
19. Honn, F. J. and Hoyt, J. M., U. S. Pat. 3,053,818, 1962 Google Scholar
20. Yagi, T. and Tatemoto, M., Polym. J. 11, 429 (1979).Google Scholar
21. Lu, Y. Y., Claude, J., Neese, B., Zhang, Q. M. and Wang, Q., J. Am. Chem. Soc. 128, 8120 (2006).Google Scholar
22. Moggi, G. and Bonardelli, P., J. Polym. Sci. Polym. Phys. 22, 357 (1984).Google Scholar
23. Cais, R. E. and Kometani, J. M., Macromolecules 18, 1354 (1985).Google Scholar
24. Murasheva, Y. M., Shashkov, A. S. and Galil-Ogly, F. A., Polym. Sci. U.S.S.R. 21, 968 (1980).Google Scholar
25. Kim, K. J., Kim, G. B., Valencia, C. L. and Rabolt, J. F., J. Polym. Sci., Part B: Polym. Phys. 32, 2435 (1994)Google Scholar
26. Sanchez, I. C. and Eby, R. K., Macromolecules 8, 638 (1975).Google Scholar
27. Lovinger, A. J., Davis, G. T., Furukawa, T. and Broadhurst, M. G., Macromolecules 15, 323 (1982). (c) A. J. Lovinger, T. Furukawa, G. T. Davis and M. G. Broadhurst, Polymer 24, 1225 (1983).Google Scholar
28. Warren, B. E., X-ray Diffraction, (Dover Publications: New York, 1990).Google Scholar