Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-03T04:59:22.841Z Has data issue: false hasContentIssue false

Ferroelectric PbZrxTi1-xO3 Thin Films Grown by Organometallic Chemical Vapor Deposition

Published online by Cambridge University Press:  25 February 2011

G.J.M. Dormans
Affiliation:
Philips Research Laboratories, P.O. Box 80000, 5600 JA Eindhoven, The Netherlands
M. de Keijser
Affiliation:
Philips Research Laboratories, P.O. Box 80000, 5600 JA Eindhoven, The Netherlands
P. J. van Veldhoven
Affiliation:
Philips Research Laboratories, P.O. Box 80000, 5600 JA Eindhoven, The Netherlands
Get access

Abstract

For the successful integration of ferroelectric thin films in IC technology, there is a need for a deposition technique capable of growing homogeneous layers at high growth rates over large-area structured substrates. Organometallic chemical vapor deposition (OMCVD) is a promising technique for meeting these demands.

Ferroelectric layers of PbZrxTi1-xO3 (PZT) were grown by OMCVD on Pt-coated 10 cm diameter Si-substrates using the precursors tetra-ethyl-lead, tetra-iso-propoxy-titanium and tetra-tertiary-butoxy-zirconium at 700 °C without any post anneal. At this temperature the layers are single phase and highly (h00) and/or (00l) oriented. The layers show good ferroelectric switching properties with high remanent polarizations, but also with high coercive field strengths. Fatigue measurements are presented for these OMCVD grown PZT layers. The layers have a switching lifetime exceeding 1011 cycles at a switching amplitude of 5 V.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Nakagawa, T., Yamaguchi, J., Okuyama, M. and Hamakawa, Y., Jap. J. Appl. Phys. 21, L655 (1982)Google Scholar
[2] Kojima, M., Okuyama, M., Nakagawa, T. and Hamakawa, Y., Jap. J. Appl. Phys. 22 (Suppl. 22-2), 14 (1983)Google Scholar
[3] Kwak, B.S., Boyd, E.P and Erbil, A., Appl. Phys. Lett. 53, 1702 (1988)Google Scholar
[4] Yoon, S.-G. and Kim, H.-G., J. Electr. Soc. 135, 3137 (1988)Google Scholar
[5] Okada, M., Watanabe, H., Murakami, M. and Tomita, K., J. Ceram. Soc. Jpn. Int. Ed. 96, 676 (1988)Google Scholar
[6] Okada, M., Takai, S., Amemiya, M. and Tominaga, K., Jap. J. Appl. Phys. 28, 1030 (1989)Google Scholar
[7] Brierley, C.J., Trundle, C., Considine, L., Whatmore, R. M. and Ainger, F.W., Ferroelectrics 91, 181 (1989)Google Scholar
[8] Swartz, S.L., Seifert, D.A., Noel, G.T. and Shrout, T.R., Ferroelectrics, 93, 37 (1989)Google Scholar
[9] Shimizu, M., Katayama, T., Shiosaki, T. and Kawabata, A., presented at the 2nd int. symp. on integrated ferroelectrics, Colorado Springs (1990)Google Scholar
[10] Keijser, M. de, Dormans, G.J.M., Cillessen, J.F.M., Leeuw, D.M. de and Zandbergen, H.W., Appl. Phys. Lett. 58, 2636 (1991)Google Scholar
[11] Dormans, G.J.M., Keijser, M. de and Larsen, P.K., presented at the 3rd int. symp. on integrated ferroelectrics, Colorado Springs (1991) (to be published in Ferroelectrics)Google Scholar
[12] Okada, M., Tominaga, K., Araki, T., Katayama, S. and Sakashita, Y., Jap. J. Appl. Phys. 29, 718 (1990)Google Scholar
[13] Sakashita, Y., Ono, T., Segawa, H., Tominaga, K. and Okada, M., J. Appl. Phys. 69, 8352 (1991)Google Scholar
[14] Funakubo, H., Imashita, K., Kieda, N. and Mizutani, N., J. Ceram. Soc. Jpn. 99, 248 (1991)Google Scholar
[15] Kashihara, K., Itoh, H., Tsukamoto, K. and Akasaka, Y., Extended Abstracts of the 1991 Int. Conf. on Solid State Devices and Materials, Yokohama, 1991 pp. 192194 Google Scholar
[16] Petuskey, W.T., Richardson, D.A. and Dey, S.K., presented at the 3rd int. symp. on integrated ferroelectrics, Colorado Springs (1991)(to be published in Ferroelectrics)Google Scholar
[17] Tominaga, K., Miyajima, M., Sakashita, Y., Segawa, H. and Okada, M., Jap. J. Appl. Phys. 29, L1874 (1990)Google Scholar
[18] Lee, C.H. and Park, S.J., J.Mat. Sci., Mat. in Electr., 1, 219 (1990)Google Scholar
[19] Kwak, B.S., Zhang, K., Boyd, E.P., Erbil, A. and Wilkens, B.J., J. Appl. Phys. 69, 767 (1991)Google Scholar
[20] Feil, W.A., Wessels, B.W., Tonge, L.M. and Marks, T.J., J. Appl. Phys. 67, 3858 (1990)Google Scholar
[21] Wills, L.A., Feil, W.A., Wessels, B.W., Tonge, L.M. and Marks, T.J., J. Cryst. Growth 107, 712 (1991)Google Scholar
[22] Jaffe, B., Roth, R.S. and Marzullo, S., J. Res. Nat. Bur. Stand. 55, 239 (1955)Google Scholar
[23] Keijser, M. de, Dormans, G.J.M., Veldhoven, P.J. van and Leeuw, D.M. de, to appear in Appl. Phys. Lett. 59, nr. 27Google Scholar
[24] Cullity, B.D., Elements of X-ray Diffraction, 2nd ed. (Addison-Wesley Publishing Company, Inc, Reading, 1978), pp. 281292 Google Scholar
[25] Ikegami, S., Ueda, I. and Nagata, T., J. Acoust. Soc. Am. 50, 1060 (1971)Google Scholar
[26] Iijima, K., Tomita, Y., Takayama, R. and Ueda, I., J. Appl. Phys. 60, 361 (1986)Google Scholar
[27] Spierings, G.A.C.M., Ulenaers, M.J.E., Kampschöer, G.L.M., Hal, H.A.M. van and Larsen, P.K., J. Appl. Phys. 70, 2290 (1991)Google Scholar
[28] Arlt, G., Hennings, D. and With, G. de, J. Appl. Phys. 58, 1619 (1985)Google Scholar