Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-24T15:27:10.169Z Has data issue: false hasContentIssue false

Ferroelectric and Structural Antiphase Domains in Hexagonal RMnO3

Published online by Cambridge University Press:  29 February 2012

K. Kobayashi
Affiliation:
Department of Materials Science, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan
T. Koyama
Affiliation:
Department of Materials Science, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan
Y. Horibe
Affiliation:
Department of Physics and Astronomy, Rutgers University, Piscataway, NJ, 08854, USA
T. Katsufuji
Affiliation:
Department of Physics, Waseda University, Tokyo 169-8555, Japan
S-W. Cheong
Affiliation:
Department of Physics and Astronomy, Rutgers University, Piscataway, NJ, 08854, USA
S. Mori*
Affiliation:
Department of Materials Science, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan
Get access

Abstract

We have investigated characteristic ferroelectric and structural antiphase domain structures in single crystals of hexagonal RMnO3 (R=Y, Ho, Lu, and Yb) by obtaining various electron diffraction patterns, dark-filed images and high-resolution lattice images. In the ferroelectric phase of RMnO3 characteristic domain structures consisting of six ferroelectric and structural antiphase domains, which can be identified as the “cloverleaf” pattern, is found in the (110) plane, in addition to the (001) plane, and are inherent to the ferroelectric phase of hexagonal RMnO3. In domain configuration with the cloverleaf pattern in the (110) plane, the structural antiphase boundaries are inclined to be parallel to the [001] direction.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Katsufuji, T., Mori, S., Masaki, M., Moritomo, Y., Yamamoto, N. and Takagi, H.: Phys. Rev. B 64 (2001) 104419.Google Scholar
[2] Vanaken, B., Palstra, T., Filippetti, A. and Spaldin, N.: Nature Mater. 3 (2004) 164170.Google Scholar
[3] Katsufuji, T., Masaki, M., Machida, A., Moritomo, Y., Kato, K., Nishibori, E., Tanaka, M., Sakata, M., Ohoyama, K., Kitazawa, K. and Takagi, H.: Phys. Rev. B 66 (2002) 134434.Google Scholar
[4] Lee, S., Pirogov, A., Kang, M. S., Jang, K. H., Yonemura, M., Kamiyama, T., Choeng, S. W., Gozzo, F., Shin, N., Kimura, H., Noda, Y., and Park, J. G., Nature 451, (2008), 805809.Google Scholar
[5] Fiebig, M., Fröhlich, D., Kohn, K., Leute, St., Lottermoser, Th., Pavlov, V. V., and Pisarev, R. V.: Phys. Rev. Lett 84 (2000) 5620.Google Scholar
[6] Lonkai, Th., Tomuta, D. G., Amann, U., Ihringer, J., Hendrikx, R. W. A., Többens, D. M. and Mydosh, J. A.: Phys. Rev. B 69, (2004) 134108.Google Scholar
[7] Hill, N.A.: J. Phys. Chem B 104, (2000) 6694.Google Scholar
[8] Choi, T., Horibe, Y., Yi, H. T., Choi, Y. J., Wu, W. D., and Cheong, S. W., Nat. Mater. 9, 253 (2010).Google Scholar
[9] Lilienblum, M., Soergel, E. and Fiebig, M., J. Appl. Phys., 110, 052007 (2011).Google Scholar
[10] Jungk, T., Hoffmann, A., Fiebig, M. and Soergel, E., Appl. Phys. Lett., 97, 012904 (2010).Google Scholar