Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-24T18:02:55.936Z Has data issue: false hasContentIssue false

Ferroelectric and Magnetic Characterization of Ferroic Pb(Fe0.5Nb0.5)O3 Ceramics

Published online by Cambridge University Press:  26 February 2011

Oscar Raymond
Affiliation:
[email protected], Centro de Ciencias de la Materia Condensada-Universidad Nacional Autónoma de México, Propiedades Opticas, Km 107, Carretera Tijuana-Ensenada, Ensenada, Baja California, 22860, Mexico, +52 646 174 46 02, +52 646 174 46 03
Reynaldo Font
Affiliation:
[email protected], Universidad de la Habana, Facultad de Física, San Lázaro y L, Vedado, La Habana, 10400, Cuba
Guillermo Alvarez
Affiliation:
[email protected], Instituto de Investigaciones en Materiales-Universidad Nacional Autónoma de México, Av. Universidad, Cd. Universitaria, Col. Copilco el Alto, Del. Coyoacan, Distrito Federal, 04510, Mexico
Jorge Portelles
Affiliation:
[email protected], Universidad de la Habana, Facultad de Física, San Lázaro y L, Vedado, La Habana, 10400, Cuba
Gopalan Srinivasan
Affiliation:
[email protected], Oakland University, Physics Department, Rochester, MI, 48309-4401, United States
Jesús M. Siqueiros
Affiliation:
[email protected], Centro de Ciencias de la Materia Condensada-Universidad Nacional Autónoma de México, Propiedades Opticas, Km 107, Carretera Tijuana-Ensenada, Ensenada, Baja California, 22860, Mexico, +52 646 174 46 02, +52 646 174 46 03
Get access

Abstract

Single phase multifunctional materials such as Pb(Fe0.5 Nb0.5)O3 (PFN), where ferroelectric and magnetic order coexist, are very promising and have great interest from the academic and technological points of view. PFN ceramics have been prepared from different kinds of FeNbO4 precursors with either monoclinic or orthorhombic structures. Crystallographic, compositional and surface morphological studies and the temperature-frequency response carried out and reported in previous works are summarized. Ferroelectric hysteretic, magnetic and magnetoelectric behaviors were measured. The remanent polarization (Pr) and coercive field (EC) as functions of temperature and external electric fields (Eext) were determined. Measurements of magnetic susceptibility (χm) exhibited antiferromagnetic order and, above the Núel point near 122 °K, Curie–Weis behavior; whereas a weak ferromagnetic observed from electron paramagnetic resonance (EPR) is discussed. However, magnetoelectric effects were not observed. Ferroelectric and magnetic behaviors, as functions of the kind of precursor used in the preparation, are discussed and correlated with the previous dielectric characterization where microstructural and equivalent circuit models were established using the impedance spectroscopy technique.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Ueda, K., Tabata, H. and Kawai, T., Appl. Phys. Lett. 75, 555 (1999).Google Scholar
2. Hill, N. A., J. Phys. Chem. B 104, 6694 (2000).Google Scholar
3. Gao, X. S., Chen, X. Y., Yin, J., Wu, J., Liu, Z. G. and Wang, M., J. Mat. Sci. 35, 5421 (2000).Google Scholar
4. Kumar, M. M., Palkar, V. R., Srinivas, K. and Suryanarayana, S. V., Appl. Phys. Lett. 76, 2764 (2000).Google Scholar
5. Maier, R., Cohn, J. L., Neumeier, J. J. and Bendersky, L. A., Appl. Phys. Lett. 78, 2536 (2001).Google Scholar
6. Mahajan, R. P., Patankar, K. K., Kothale, M. B. and Patil, S. A., Bull. Mater. Sci. 23, 273 (2000).Google Scholar
7. Patankar, K. K., Mathe, V. L., Patil, A. N., Patil, S. A., Lotke, S.D., Kolekar, Y. D. and Joshi, P. B., J. Electroceram. 6:2, 115 (2001).Google Scholar
8. Prasad, N. V., Prasad, G., Bhimasankaram, T., Suryanarayana, S. V. and Kumar, G. S., Bull. Mater. Sci. 24, 487 (2001).Google Scholar
9. Wakiya, N., Bao, D., Shinosaki, K. and Mizutani, N., Ferroelectrics 273, 149 (2002).Google Scholar
10. Zheng, H., Wang, J., Lofland, S. E., Ma, Z., Mohaddes-Ardabili, L., Zhao, T., Salamanca-Riba, L., Shinde, S. R., Ogale, S. B., Bai, F., Viehland, D., Jia, Y., Schlom, D. G., Wuttig, M., Roytburd, A., Ramesh, R., Science 303, 661 (2004).Google Scholar
12. Fuentes, L., Garcia, M., Matutes, J. and Rios, D., J. All. Comp. 369, 10 (2004).Google Scholar
13. Yan, L., Li, J., Suchicital, C., and Viehland, D., App. Phys. Lett. 89, 132913 (2006)Google Scholar
14. Smolenskii, G. A. and Bokov, V.A., J. Appl. Phys. 35, 915 (1964).Google Scholar
15. Smolenskii, G. A. and Chupis, I.E., Sov. Phys. Usp. 25, 475 (1982).Google Scholar
16. Raymond, O., Font, R., Suárez-Almodovar, N., Portelles, J. and Siqueiros, J. M., J. Appl. Phys. 97, 084107 (2005).Google Scholar
17. Raymond, O., Font, R., Suárez-Almodovar, N., Portelles, J. and Siqueiros, J. M., J. Appl. Phys. 97, 084108 (2005).Google Scholar
18. Raymond, O., Font, R., Suárez-Almodovar, N., Portelles, J. and Siqueiros, J. M., J. Appl. Phys. 99, 124101 (2006).Google Scholar
19. Alvarez, G., Font, R., Portelles, J., Valenzuela, R., and Zamorano, R.. Physica B 384, 322 (2006).Google Scholar