Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-26T03:57:47.011Z Has data issue: false hasContentIssue false

f-Element Influence on the Size of Nanophase Phosphate Inclusions in Silica

Published online by Cambridge University Press:  01 February 2011

James V. Beitz
Affiliation:
Chemistry Division, National Laboratory, Argonne, IL 60439–4831, USA
S. Skanthakumar
Affiliation:
Chemistry Division, National Laboratory, Argonne, IL 60439–4831, USA
S. Seifert
Affiliation:
Advanced Photon Source, National Laboratory, Argonne, IL 60439–4831, USA
P. Thiyagarajan
Affiliation:
Intense Pulsed Neutron Source, Argonne, National Laboratory, Argonne, IL 60439–4831, USA
Get access

Abstract

Insight into the factors that control the formation and size of heavy metal phosphate nanophases in vitreous silica has been gained by combining conventional and anomalous small angle x-ray scattering studies with powder x-ray diffraction and laser-induced fluorescence investigations. Europium, thorium, and uranyl ions were sorbed from aqueous solutions into a chemically functionalized porous silica (termed Diphosil). Aliquots of those samples were heated to a series of temperatures that spanned the pore collapse point. Loading with trivalent europium ions resulted in production of nanophases whose size corresponded to the average number of metal ions per pore. Thorium or uranyl ions resulted in retention of porosity to higher temperature with eventual pore collapse that evidently resulted in formation of nanophases whose size exceeded that determinable under the experimental conditions.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Hebbink, G. A., Stouwdam, J. W., Reinhoudt, D. N., and Van Veggel, F. C. J. M, Adv. Materials 14, 1147 (2002)Google Scholar
Williams, G. R., Bayram, S. B., Rand, S. C., Hinklin, T., and Laine, R. M., Phys. Rev. A 65, 013807 (2002).Google Scholar
2. Lu, C.-H. and Jagannathan, R., Appl. Phys. Let. 80, 3608 (2002).Google Scholar
3. Beitz, J. V. and Williams, C. W., Solv. Extr. Ion Exch. 19, 699 (2001).Google Scholar
4. Chiarizia, R., Horwitz, E. P., D'Arcy, K. A., Alexandratos, S. D., and Trochimczuk, A. W., Solv. Extr. Ion Exch. 14, 1077 (1996).Google Scholar
5. Seifert, S., Winans, R. W., Tiede, D. M., and Thiyagarajan, P., J. Appl. Cryst. 33, 782 (2000).Google Scholar
6. Mullica, D. F., Grossie, D. A., Boatner, L. A., L. A., , Inorg. Chim. Acta 109, 105 (1985).Google Scholar
7. Guinier, A. and Gournet, G., Small-Angle Scattering of X-Rays (John Wiley & Sons, New York, 1955).Google Scholar
8. Brinker, C. J. and Scherer, G. W., Sol-gel Science: The Physics and Chemistry of Sol-gel Processing (Academic Press, Boston, 1990).Google Scholar
9. Waseda, Y., Anomalous X-ray Scattering for Materials Characterization (Springer-Verlag, Berlin, 2002).Google Scholar
10. Benard, P., Brandel, V., Dacheux, N., Jaulmes, S., Launay, S., Lindecker, C., Genet, M., Louer, D., and Quarton, M., Chem. Mater. 8, 181 (1996).Google Scholar
11. Benard, P., Louer, D., Dacheux, N., Brandel, V., Genet, M., Chem. Mater. 6, 1049 (1994).Google Scholar
12. Barten, H. and Cordfunke, E. H. P., Thermochim. Acta 40, 357 (1980).Google Scholar