Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-12T09:39:22.356Z Has data issue: false hasContentIssue false

Fatigue-Crack Growth in the Superelastic Endovascular Stent Material Nitinol

Published online by Cambridge University Press:  15 February 2011

A. L. Mckelvey
Affiliation:
Department of Materials Science and Mineral Engineering, University of California, Berkeley, CA 94720U.S.A.
R. O. Ritchie
Affiliation:
Department of Materials Science and Mineral Engineering, University of California, Berkeley, CA 94720U.S.A.
Get access

Abstract

This paper describes a study of fatigue-crack propagation behavior in the superelastic alloy Nitinol. This work is motivated by biomedical applications, and the current interest to improve the design and performance of medical stents for implantation in the human body. Specifically, the objective of this work is to study the effect of environment on cyclic crack- growth resistance in a ∼50Ni-5OTi (at. %) alloy, and to provide the necessary data for the safe life predication of Nitinol endovascular stents. The material selected for this study has been heat treated such that it is superelastic at human body temperature. Characterization of fatigue-crack growth rates has been performed at 37°C on disc-shaped compact-tension samples, in environments of air, aerated deionized water, and aerated Hank's solution. Results indicate that, in fact, Nitinol has the lowest fatigue-crack growth resistance of metallic alloys currently used for implant-applications.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Buehler, W. J. and Wiley, R. C., U.S. Patent No. 3 174 851 (1965).Google Scholar
2. Jackson, C. M., Wagner, H. J. and Wasilewski, R. J., Report No. NASA-SP 5110, National Aeronautics and Space Administration (1972).Google Scholar
3. Saburi, T. and Wayman, C. M., Acta Metall. 27, 979 (1979).Google Scholar
4. Wayman, C. M. and Duerig, T. W., in Engineering Aspects of Shape Memory Alloys, edited by Duerig, T. W., Melton, K. N., Stockel, D. and Wayman, C. M. (Butterworth Heinemann, London, 1990), p. 3.Google Scholar
5. Chuter, T. A. M., Donayre, C. E. and White, R. A., Endoluminal Vascular Prostheses, (Little, Brown and Company, Boston, 1995).Google Scholar
6. Bramfitt, J. E. and Hess, R. L., in SMST-94, edited by Pelton, A. R., Hodgson, D. and Duerig, T. (First Intl. Conference on Shape-Memory and Superelastic Technologies Proc., Monterey, 1994) pp. 435442.Google Scholar
7. Duerig, T. W., Pelton, A. R. and Stockel, D., Metall 50, 569 (1996).Google Scholar
8. Ritchie, R. O., J. Heart Valve Disease 5, S9 (1996).Google Scholar
9. Dauskardt, R. H., Duerig, T. W. and Ritchie, R. O., in Shape Memory Materials, edited by Otsuka, K. and Shimizu, K. (Mater. Res. Soc. Proc. 9, Pittsburgh, PA, 1989) pp. 243249.Google Scholar
10. Miyazaki, S., Suizu, M., Otsuka, K. and Takashima, T., in Shape Memory Materials, edited by Otsuka, K. and Shimizu, K. (Mater. Res. Soc. Proc. 9, Pittsburgh, PA, 1989) pp. 263268.Google Scholar
11. Melton, K. N. and Mercier, O., Acta Metall. 27, 137 (1979).Google Scholar
12. Ritchie, R. O., Mater. Sci. Eng. A 103, 15 (1988).Google Scholar
13. Olson, G. B. and Cohen, M., Metall. Trans. A 7, 1897 (1976).Google Scholar
14. Hombogen, E., Acta Metall. 26, 147 (1978).Google Scholar
15. Garvie, R. C., Hannink, R. J. H. and Urbani, C., Ceramurgia International 6, 19 (1980).Google Scholar
16. Porter, D. L. and Heuer, A. H., J. Am. Ceram. Soc. 60, 183 (1977).Google Scholar
17. Lange, F. F., J. Mater. Sci. 17, 225 (1982).Google Scholar
18. Heuer, A. H., Claussen, N., Kriven, W. M. and Ruhle, M., J. Am. Ceram. Soc. 65, 642 (1982).Google Scholar
19. Swain, M. V., Garvie, R. C. and Hannink, R. H., J. Am. Ceram. Soc. 66, 358 (1983).Google Scholar
20. Hannink, R. J., J. Mater. Sci. 13, 2487 (1978).Google Scholar
21. Evans, A. G. and Cannon, R. M., Acta Metall. 34, 761 (1986).Google Scholar
22. Mei, Z. and Morris, J. W. Jr., Metall. Trans. A 21, 3137 (1990).Google Scholar
23. Dauskardt, R. H., Marshall, D. B. and Ritchie, R. O., J. Am. Ceram. Soc. 73, 893 (1990).Google Scholar
24. McMeeking, R. M. and Evans, A. G., J. Am. Ceram. Soc. 65, 242 (1982).Google Scholar
25. Budiansky, B., Hutchinson, J. W. and Lambropoulos, J. C., Intl. J. Sol. Struc. 19, 337 (1983).Google Scholar
26. Suresh, S., Fatigue of Materials, 1st ed. (Cambridge University Press, New York, 1991) p. 356.Google Scholar