Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-12T09:49:09.265Z Has data issue: false hasContentIssue false

Fast-Probe Plasma Diagnostics

Published online by Cambridge University Press:  22 February 2011

Dennis M. Manos
Affiliation:
Princeton University, Plasma Physics Laboratory, P.O. Box 451, Princeton, NJ 08543
Stephen J. Kilpatrick
Affiliation:
Princeton University, Plasma Physics Laboratory, P.O. Box 451, Princeton, NJ 08543
Get access

Abstract

We have used a variety of electrostatic, calorimetric and sample exposure probes to diagnose the edge plasma of neutral-beam heated discharges on the tokamak fusion test reactor (TFTR).

In the past, spatial profiles of electron density and temperature, and other edge parameters, were generated by repositioning probes between discharges during experiments consisting of a large number of nominally identical discharges. Recently, we have employed a probe which executes a relatively rapid stroke to generate spatial and temporal profiles during a single discharge. This has greatly enhanced our ability to perform systematic studies of the edge plasma as various operating variables are changed. In addition, this rapid radial motion permits withdrawal of the probe during portions of the discharge when the intense neutral beam heating would otherwise damage the measuring tips.

Applications of such a technique to low temperature, process plasmas will be discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Swift, J. D. and Schwar, M. J. R., Electrical Probes for Plasma Diagnostics, (Iliffe, London, 1970).Google Scholar
2. Clements, R. M., J. Vac. Sci. Technol. 15, 193 (1978).Google Scholar
3. Cherrington, B. E., Plasma Chemistry and Plasma Processing 2, 113 (1982).Google Scholar
4. Manos, D. M. and McCracken, G. M., in Physics of Plasma-Wall Interactions in Controlled Fusion, edited by D. Post and R. Behrisch (Plenum Press, New York), p. 135.Google Scholar
5. Manos, D. M., J. Vac. Sci. Technol. A3, 1059 (1985).CrossRefGoogle Scholar
6. Cox, G. and Curtis, P. B., J. Appl. Phys. 3, 1255, (1970).Google Scholar
7. Boyd, R. L. F., Space Physics The Study of Plasmas in Space, (Oxford, Claredon, 1974).Google Scholar
8. Space Research, edited by Bijl, H. Kallman, 1st Proceedings Int. Space Science Symposia, Nice, (January 1960), North Holland, Amsterdam, (1960).Google Scholar
9. Post, D. E. and Lackner, K., in Physics of Plasma-Wall Interactions in Controlled Fusion, edited by D. Post and R. Behrisch, (Plenum Press, New York), p. 627.Google Scholar
10. Manos, D. M., Budny, R. V., Kilpatrick, S., Stangeby, P., and Zweben, S., Rev. Sci. Instrum. 57, 2107 (1986).CrossRefGoogle Scholar
11. Zuhr, R. A., Roberto, J. B., and Appleton, B. R., Nuclear Science Applications 1, 617 (1984).Google Scholar
12. Wampler, W. and Manos, D. M., J. Vac. Sci. Technol. Al, 827 (1983).Google Scholar
13. Malacarne, M., Cripwells, P., et al., Fluctuations during JET discharges with H-mode, JET Report, JET-P(87), p.22.Google Scholar
14. zweben, S., Manos, D., et al., J. Nucl. Mater. 145–146, 250 (1987).Google Scholar
15. McGuire, , et.al., Proceedings 11th Int. Conf. on Plasma Physics and Controlled Fusion Research, IAEA-CN-A-VII-4, (IAEA, Vienna, 1987).Google Scholar
16. Tang, W. M., Nuclear Fusion, 18, 1089 (1978).Google Scholar
17. Colestock, P. L., Cohen, S.A., et. al., J. Vac. Sci. Technol. A3, 1211, (1987).Google Scholar
18. Vietzke, E., Flaskamp, K. and Phillips, V., J. Nucl. Mater. 128/129, 545 (1984).Google Scholar
19. Pitcher, C. S., McCracken, G. M., et.al., J. Nucl. Mater. 145/146, 539 (1987).CrossRefGoogle Scholar
20. Tsois, N., Haas, G., Lenoci, M., Neuhauser, J., et.al., Proc. 14th EPS Conference,(Madrid, June 22–26), p. 658.Google Scholar
21. Neuhauser, J., Carlson, A., Fussman, G., Haas, G., Rapp, H., Tsois, N., Bull. Am. Phys. Soc. 32, 1839 (1987).Google Scholar
22. Lenoci, M., et.al., Max Planck Institute fur Plasmaphysik Report, IPP-III, 110, (May 1986), p. 115.Google Scholar
23. Budny, R. V., Heifitz, D., et. al., J. Nucl. Mater. 145/146, 245 (1987).Google Scholar
24. Gottscho, R. A., Davis, G. P., and Burton, R. H., Plasma Chemistry and Plasma Processing 3, 193 (1983).Google Scholar
25. Dylla, H. F. and Manos, D. M., Mat. Res. Soc. Symp. 38, 3 (1985).Google Scholar
26. Manos, D. M. and Dylla, H. F., in Plasma Etching, edited by Manos, D. M. and Flamm, D. L., (Academic Press, New York, 1988), Chapter 3, in press.Google Scholar
27. Steinbruchel, C. H., Curtis, J., Lehmann, H. W., and Widmer, R., IEEE Trans. on Plasma Sci. PS–14, 137 (1986).CrossRefGoogle Scholar
28. Kushner, M. J., IEEE Trans. on Plasma Science PS–14, 188 (1986).CrossRefGoogle Scholar
29. Rossnagel, S. M. and Kaufman, H. R., J. Vac. Sci. Technol. Al, 1822 (1986).Google Scholar
30. Rossnagel, S. M. and Kaufman, H. R., J. Vac. Sci Technol. A5, 2276 (1987).Google Scholar
31. Graves, D. B. and Jensen, K. F., IEEE Trans. on Plasma Science PS–14,78 (1986).Google Scholar
32. Godyak, A. and Khanneh, A. S., IEEE Trans. on Plasma Sci. PS–14, 112 (1986).Google Scholar
33. Kushner, M. J., J. Appl. Phys. 53, 2939 (1982).Google Scholar
34. LaBombard, B., Conn, R. W., Lehmer, R., Leung, W. K., Bull.Am. Phys. Soc. 32, 1941 (1987).Google Scholar