Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-24T08:19:59.654Z Has data issue: false hasContentIssue false

Facile Synthesis of Semiconductor-Metal Hybrid Nanoparticles with an Anisotropic Structure

Published online by Cambridge University Press:  18 May 2016

Akira Ohnuma
Affiliation:
Research Laboratories, Toyota Boshoku Corporation, Kariya, Aichi 448-8651, Japan
Kouta Iwasaki
Affiliation:
Research Laboratories, Toyota Boshoku Corporation, Kariya, Aichi 448-8651, Japan
Get access

Abstract

Here we report a facile and versatile procedure for the preparation of semiconductor-metal hybrid nanoparticles with an anisotropic structure consisting of bismuth telluride (Bi2Te3) and gold (Au) (or silver (Ag)) nanoparticles. We simply added flake-shaped Bi2Te3 nanoparticles (Bi2Te3 nanoflakes) and trisodium citrate to an aqueous Au or Ag precursor solution heated to boiling. The edge part of the Bi2Te3 nanoflake was preferentially modified with Au or Ag nanoparticles, and the Bi2Te3-Au hybrid nanoparticles had a broad peak of light absorption around the visible region and a higher thermoelectric power factor than ordinary Bi2Te3 nanoflakes. Because of the simplicity of the procedure, the hybrid nanoparticles are expected to be used as a new class of functional materials in the large scale production.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Perro, A., Reculusa, S., Ravaine, S., Bourgeat-Lami, E., and Duguet, E. J., Mater. Chem. 15, 3745 (2005).CrossRefGoogle Scholar
Glotzer, S., and Solomon, M., Nat. Mater. 6, 557 (2007).CrossRefGoogle Scholar
Yang, S., Kim, S., Lim, J., and Yi, G., J. Mater. Chem. 18, 2177 (2008).CrossRefGoogle Scholar
Ohnuma, A., Cho, E. C., and Ohtani, B., Chem. Lett. 41, 1319 (2012).CrossRefGoogle Scholar
Ohnuma, A., and Ohtani, B., Hyomen 50, 398 (2012).Google Scholar
Ohnuma, A., Abe, R., Shibayama, T., and Ohtani, B., Chem. Commun. 3491 (2007).CrossRefGoogle Scholar
Ohnuma, A., Cho, E. C., Camargo, P. H. C., Au, L., Ohtani, B., and Xia, Y., J. Am. Chem. Soc. 131, 1352 (2009).CrossRefGoogle Scholar
Ohnuma, A., Cho, E. C., Jiang, M., Ohtani, B., and Xia, Y., Langmuir 25, 13880 (2009).CrossRefGoogle Scholar
Min, Y., Roh, J. W., Yang, H., Park, M., Kim, S. I., Hwang, S., Lee, S. M., Lee, K. H., and Jeong, U., Adv. Mater. 25, 1425 (2013).CrossRefGoogle Scholar
Snyder, G. J., and Toberer, E. S., Nature Mater. 7, 105 (2008).CrossRefGoogle Scholar
Ulman, A., Chem. Rev. 96, 1533(1996).CrossRefGoogle Scholar
Xie, S., Choi, S-Il, Lu, N., Roling, L. T., Herron, J. A., Zhang, L., Park, J., Wang, J., Kim, M. J., Xie, Z., Mavrikakis, M., and Xia, Y., Nano Lett. 14, 3570 (2014).CrossRefGoogle Scholar
Xia, Y., and Halas, N. J., MRS Bulletin 30, 338 (2005).CrossRefGoogle Scholar