Article contents
Facile Synthesis of Pure Boron Nanotubes and Nanofibers
Published online by Cambridge University Press: 28 March 2011
Abstract
A facile and scalable chemical vapor deposition (CVD) process in flowing argon using a solid instead of a reactive gaseous boron precursor has been carried out to synthesize crystalline boron nanostructures comprising of relatively straight boron nanotubes (BNTs) and nanofibers (BNFs). The synthesis involves the use of solid magnesium boride as the boron and magnesium catalyst precursor, nickel boride as co-catalyst, and MCM-41 zeolite as the growth template. The BNTs and BNFs produced have a narrow distribution of diameters between about 10 nm to 20 nm and lengths from about 500 nm to above 1 μm. Scanning and transmission electron microscope (SEM and TEM) imaging together with electron energy loss spectroscopy (EELS) and energy dispersive spectroscopy (EDS) have been conducted to characterize the structure, morphology and growth mechanism of these novel nanostructures. High resolution TEM imaging has been used to identify BNTs and BNFs in the nanostructures synthesized.
- Type
- Research Article
- Information
- MRS Online Proceedings Library (OPL) , Volume 1307: Symposium CC – Boron and Boron Compounds—From Fundamentals to Applications , 2011 , mrsf10-1307-cc05-21
- Copyright
- Copyright © Materials Research Society 2011
References
REFERENCES
- 7
- Cited by