Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-24T14:09:48.673Z Has data issue: false hasContentIssue false

Fabrication of Super Water-Repellent Surfaces by Nanosphere Lithography

Published online by Cambridge University Press:  17 March 2011

Jau-Ye Shiu
Affiliation:
Center for Applied Sciences, Academia Sinica, 128, Section 2, Academia Road, Nankang, Taipei 115, Taiwan
Chun-Wen Kuo
Affiliation:
Center for Applied Sciences, Academia Sinica, 128, Section 2, Academia Road, Nankang, Taipei 115, Taiwan
Peilin Chen*
Affiliation:
Center for Applied Sciences, Academia Sinica, 128, Section 2, Academia Road, Nankang, Taipei 115, Taiwan
Chung-Yuan Mou
Affiliation:
Department of Chemistry, National Taiwan University, Taipei, Taiwan
*
*Corresponding author: E-mail: [email protected], Tel: +886-2-2789-8000, Fax: +886-2-2782-6680
Get access

Abstract

: Inspired by the water-repellent behavior of the micro- and nano-structured plant surfaces, superhydrophobic materials, with a water contact larger than 150° superhydrophobic surfaces using a combination of nanosphere lithography and plasma etching. It has been found that the water contact angle on these surfaces can be systematically tuned from 132° to 168° by trimming the diameters of polystyrene nanospheres using oxygen plasma. The water contact angles measured on these surfaces can be modeled by the Cassie's formulation without any adjustable parameter.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Neinhuis, C., Barthlott, W.,Ann. Bot. 79, 677 (1997).CrossRefGoogle Scholar
2. Barthlott, W., Neinhuis, C., Planta, 202, 1 (1997).CrossRefGoogle Scholar
3. Nakajima, A., Fujishima, A., Hashimoto, K., Watanabe, T., Adv. Mater. 11, 1365 (1999).3.0.CO;2-F>CrossRefGoogle Scholar
4. Patankar, N.A., Langmuir, 19, 1249 (2003)CrossRefGoogle Scholar
5. Feng, L., Li, S., Li, Y., Li, H., Zhang, L., Zhai, J., Song, Y., Liu, B., Jiang, L., Zhu, D., Adv. Mater. 14, 1857 (2002).CrossRefGoogle Scholar
6. Gu, Z., Uetsuka, H., Takahashi, K., Nakajima, R., Onishi, H., Fujishima, A., Sato, O., Angew. Chem. Int. Ed. 42, 894 (2003)CrossRefGoogle Scholar
7. Teare, D.O.H., Spanos, C.G., Ridley, P., Kinmond, E.J., Roucoules, V., Badyal, J.P.S., Chem. Mater. 14, 4566 (2002).CrossRefGoogle Scholar
8. Tsujii, K., Yamamoto, T., Onda, T., Shibuchi, S., Angew. Chem. Int. Ed. 36, 1001 (1997).CrossRefGoogle Scholar
9. Erbil, H.Y., Demirel, A.L., Avci, Y., Mert, O., Science, 299, 1377 (2003).CrossRefGoogle Scholar
10. Woodward, I., Schofield, W.C.E., Roucoules, V., Badyal, J.P.S., Langmuir, 19, 3432 (2003).CrossRefGoogle Scholar
11. Morra, M., Occhiello, E., Garbassi, F., Langmuir, 5, 872 (1989).CrossRefGoogle Scholar
12. Morra, M., Occhiello, E., Garbassi, F., J. Colloid Inerface Sci., 132, 504 (1989).CrossRefGoogle Scholar
13. Li, H., Wang, X., Song, Y., Liu, Y., Li, Q., Jiang, L., Zhu, D., Angew. Chem. Int. Ed. 40, 1743 (2002).3.0.CO;2-#>CrossRefGoogle Scholar
14. Feng, L., Li, S., Li, H., Zhai, J., Song, Y., Jiang, L., Zhu, D., Angew. Chem. Int. Ed. 41, 1221 (2002).3.0.CO;2-G>CrossRefGoogle Scholar
15. Shibuichi, S., Onda, T., Satoh, N., Tsujii, K., J. Phys. Chem. 100, 19512 (1996).CrossRefGoogle Scholar
16. Bico, J., Marzolin, C., Quere, D., Europhys. Lett. 47, 220 (1999).CrossRefGoogle Scholar
17. Yoshimitsu, Z., Nanajima, A., Watanabe, T., Hashimoto, K., Langmuir, 18, 5818 (2002).CrossRefGoogle Scholar
18. Chen, W., Fadeev, A.Y., Hsieh, M.C., Oner, D., Youngblood, J., McCarthy, T.J., Langmuir, 15, 3395 (1999).CrossRefGoogle Scholar
19. Oner, D., McCarthy, T.J., Langmuir, 16, 7777 (2000).CrossRefGoogle Scholar
20. Fischer, U.C., Zingsheim, H.P., J. Vac. Sci. Technol., 19, 881 (1981).CrossRefGoogle Scholar
21. Hulteen, J.C., Duyne, R.P. Van, J. Vac. Sci. Technol. A, 13,1553 (1995).CrossRefGoogle Scholar
22. Haynes, C.L., Duyne, R.P. Van, J. Phys. Chem. B, 105, 5599 (2001).CrossRefGoogle Scholar
23. Kuo, C.W., Shiu, J.Y., Cho, Y.H., Chen, P., Adv. Mater. 15, 1065 (2003).CrossRefGoogle Scholar
24. Kuo, C.W., Shiu, J.Y., Chen, P., Chem. Mater. 15, 2917 (2003).CrossRefGoogle Scholar
25. Kuo, C.W., Shiu, J.Y., Chen, P., Somorjai, G.A., J. Phys. Chem. B 107, 9950 (2003).CrossRefGoogle Scholar
26. Wenzel, R.N., Ind. Eng. Chem, 28, 988 (1936).CrossRefGoogle Scholar
27. Cassie, A.B.D., Baxter, S., Trans. Faraday. Soc. 40, 546 (1944).CrossRefGoogle Scholar
28. Nakae, H., Inui, R., Hirata, Y., Saito, H., Acta Mater. 46, 2313 (1998).CrossRefGoogle Scholar