Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-03T05:43:20.753Z Has data issue: false hasContentIssue false

Fabrication of SrRuO3 Epitaxial Thin Films on YBa2Cu3Ox / CeO2 / YSZ - Buffered Si Substrates by Pulsed Laser Deposition

Published online by Cambridge University Press:  01 February 2011

Takamitsu Higuchi
Affiliation:
Technology Platform Research Center, SEIKO EPSON Corporation 281 Fujimi, Fujimi-machi, Nagano 399–0293, Japan
Koichi Morozumi
Affiliation:
Technology Platform Research Center, SEIKO EPSON Corporation 281 Fujimi, Fujimi-machi, Nagano 399–0293, Japan
Setsuya Iwashita
Affiliation:
Technology Platform Research Center, SEIKO EPSON Corporation 281 Fujimi, Fujimi-machi, Nagano 399–0293, Japan
Masaya Ishida
Affiliation:
Technology Platform Research Center, SEIKO EPSON Corporation 281 Fujimi, Fujimi-machi, Nagano 399–0293, Japan
Tatsuya Shimoda
Affiliation:
Technology Platform Research Center, SEIKO EPSON Corporation 281 Fujimi, Fujimi-machi, Nagano 399–0293, Japan
Get access

Abstract

Pseudocubic SrRuO3 (100) epitaxial thin films were fabricated on Si (100) with a YBa2Cu3Ox / CeO2 / YSZ (yttria-stabilized-zirconia) triple buffer layer ∼ 14 nm thick by pulsed laser deposition (PLD). Reflection high-energy electron diffraction (RHEED) and X-ray diffraction (XRD) revealed that the first buffer layer of YSZ (100) was epitaxially grown on naturally oxidized Si (100) substrates with the process condition of PB (base pressure) = 1×10-Torr, PO2 (oxygen partial pressure) = 5×10- Torr, and Ts (substrate temperature) = 700 °C. Higher deposition rate of YSZ in the range of 0 ∼ 0.6 nm/min brought about better crystallinity with a smaller value of a full-width at half maximum (FWHM) in the YSZ (200) rocking curve. Subsequent deposition of CeO2, YBa2Cu3Ox, and SrRuO3 resulted in an SrRuO3 (100) epitaxial thin film exhibiting good crystallinity with FWHM = 1.7° in the SrRuO3 (200) rocking curve.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Jones, C. W., Battle, P. D., Lightfoot, P., and Harrison, W. T. A., Acta Crystallogr. Sec. C 45, 365 (1989).Google Scholar
2. Eom, C. B., van Dover, R. B., Phillips, J. M., Werder, D. J., Marshall, J. H., Chen, C. H., Cava, R. J., Fleming, R. M., and Fork, D. K., Appl. Phys. Lett. 63, 2570 (1993).Google Scholar
3. Nakagawara, O., Kobayashi, M., Yoshino, Y., Katayama, Y., Tabata, H., and Kawai, T., J. Appl. Phys. 78, 7226 (1995).Google Scholar
4. Hubbard, K. J. and Schlom, D. G., J. Mater. Res. 11, 2757 (1996).Google Scholar
5. Fork, D. K., Ponce, F. A., Tramontana, J. C., and Geballe, T. H., Appl. Phys. Lett. 58, 2294 (1991).Google Scholar
6. Senzaki, J., Kurihara, K., Nomura, N., Mitsunaga, O., Iwasaki, Y., and Ueno, T., Jpn. J. Appl. Phys. 37, 5150 (1998).Google Scholar
7. Kado, Y. and Arita, Y., J. Appl. Phys. 61 2398 (1987).Google Scholar
8. Higuchi, T., Chen, Y. X., Koike, J., Iwashita, S., Ishida, M., and Shimoda, T., Jpn. J. Appl. Phys. 41, L481 (2002).Google Scholar
9. Fork, D. K., Fenner, D. B., Connell, G. A. N., Phillips, J. M., and Geballe, T. H., Appl. Phys. Lett. 57, 1137 (1990).Google Scholar
10. Hou, S. Y., Kwo, J., Watts, R. K., Cheng, J. –Y., and Fork, D. K., Appl. Phys. Lett. 67, 1387 (1995).Google Scholar
11. Lander, J. J. and Morrison, J., J. Appl. Phys. 33, 2089 (1962).Google Scholar
12. Tokita, K. and Hoshi, H., Jpn. J. Appl. Phys. 39, 5399 (2000).Google Scholar
13. Gupta, A., J. Appl. Phys. 73, 7877 (1993).Google Scholar