Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-28T17:30:19.079Z Has data issue: false hasContentIssue false

Fabrication of Silk Microstructures Using Photolithography

Published online by Cambridge University Press:  12 May 2015

Ramendra K. Pal
Affiliation:
Virginia Commonwealth University, Richmond, Virginia, USA.
Nicholas E. Kurland
Affiliation:
Virginia Commonwealth University, Richmond, Virginia, USA.
Subhas C. Kundu
Affiliation:
Indian Institute of Technology, Kharagpur, West Bengal, India.
Vamsi K. Yadavalli
Affiliation:
Virginia Commonwealth University, Richmond, Virginia, USA.
Get access

Abstract

Precise spatial patterns and micro and nanostructures of peptides and proteins have widespread applications in tissue engineering, bioelectronics, photonics, and therapeutics. Optical lithography using proteins provides a route to directly fabricate intricate, bio-friendly architectures rapidly and across a range of length scales. The unique mechanical strength, optical properties, biocompatibility and controllable degradation of biomaterials from silkworms offer several advantages in this paradigm. Here, we present the biochemical synthesis and applications of a “protein photoresist” synthesized from the silk proteins, fibroin and sericin. Using light-activated direct-write processes such as photolithography, we show how silk proteins can form high resolution, high fidelity structures in two and three dimensions. Protein features can be precisely patterned at sub-microscale resolution (µm) at the bench-top over macroscale areas (cm), easily and repeatedly with high-throughput. For instance, periodic, microstructured arrays can be patterned over large areas to form structurally induced iridescent patterns and functional opto-electronic structures. We further demonstrate how photocrosslinked protein micro-architectures can function for the spatial guidance of cells without use of cell-adhesive ligands as biocompatible and biodegradable scaffolds. The ease of biochemical functionalization, biocompatibility, as well as favorable mechanical properties and biodegradation of this silk biomaterial provide opportunities for otherwise inaccessible applications as sustainable, bioresorbable protein microdevices.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Narayan, R. J., Philos. T. R. Soc. A 368 (1917), 18311837(2010).CrossRefGoogle Scholar
Li, Z. and Kawashita, M., J. Artif. Organs 14(3), 163170 (2011).CrossRefGoogle Scholar
Fattahi, P., Yang, G., Kim, G. and Abidian, M. R., Adv. Mater. 26(12), 18461885 (2014).CrossRefGoogle Scholar
Jagur-Grodzinski, J., Polym. Adv. Technol. 21(1), 2747 (2010).Google Scholar
Kohane, D. S. and Langer, R., Pediatr. Res. 63(5), 487491 (2008).CrossRefGoogle Scholar
Coma, V., Polimeros 23(3), 287297 (2013).Google Scholar
Stegemann, J. P., Kaszuba, S. N. and Rowe, S. L., Tissue Eng. 13(11), 26012613 (2007).CrossRefGoogle Scholar
Lee, K.-B., Park, S.-J., Mirkin, C. A., Smith, J. C. and Mrksich, M., Science 295, 17021705 (2002).CrossRefGoogle Scholar
Gates, B. D., Xu, Q. B., Stewart, M., Ryan, D., Willson, C. G. and Whitesides, G. M., Chem. Rev. 105, 11711196 (2005).CrossRefGoogle Scholar
Whitesides, G. M., Ostuni, E., Takayama, S., Jiang, X. and Ingber, D. E., Annu. Rev. Biomed. Eng. 3, 335373 (2001).Google Scholar
Whitesides, G. M., Mathias, J. P. and Seto, C. T., Science 254, 13121319 (1991).CrossRefGoogle Scholar
Omenetto, F. G. and Kaplan, D. L., Science 329, 528531 (2010).CrossRefGoogle Scholar
Kundu, B., Kurland, N. E., Bano, S., Patra, C., Engel, F. B., Yadavalli, V. K. and Kundu, S. C., Prog. Polym. Sci. 39, 251267 (2014).CrossRefGoogle Scholar
Borkner, C. B., Elsner, M. B. and Scheibel, T., ACS Appl. Mater. Interfaces 6, 1561115625 (2014).CrossRefGoogle Scholar
Tao, H., Kaplan, D. L. and Omenetto, F. G., Adv. Mater. 24, 28242837 (2012).CrossRefGoogle Scholar
Galeotti, F., Andicsova, A., Yunus, S. and Botta, C., Soft Matter 8, 48154821 (2012).CrossRefGoogle Scholar
Kim, S., Marelli, B., Brenckle, M. A., Mitropoulos, A. N., Gil, E.-S., Tsioris, K., Tao, H., Kaplan, D. L. and Omenetto, F. G., Nat. Nanotechnol. 9, 306310 (2014).CrossRefGoogle Scholar
Brenckle, M. A., Tao, H., Kim, S., Paquette, M., Kaplan, D. L. and Omenetto, F. G., Adv. Mater. 25, 24092414 (2013).CrossRefGoogle Scholar
Kurland, N. E., Dey, T., Kundu, S. C. and Yadavalli, V. K., Adv. Mater 25, 62076212, (2013).CrossRefGoogle Scholar
Kurland, N. E., Dey, T., Wang, C., Kundu, S. C. and Yadavalli, V. K., Adv Mater. 26, 44314437 (2014).CrossRefGoogle Scholar
Rockwood, D. N., Preda, R. C., Yucel, T., Wang, X., Lovett, M. L. and Kaplan, D. L., Nat. Protoc. 6, 16121631 (2011).CrossRefGoogle Scholar
Horan, R. L., Antle, K., Collette, A. L., Huang, Y. Z., Huang, J., Moreau, J. E., Volloch, V., Kaplan, D. L. and Altman, G. H., Biomaterials 26, 33853393 (2005).CrossRefGoogle Scholar
Seago, A. E., Brady, P., Vigneron, J.-P. and Schultz, T. D., J. R. Soc. Interface 6, S165S184 (2009).CrossRefGoogle Scholar
Malliaras, G. G., BBA-Gen. Subjects 1830, 42864287 (2013).CrossRefGoogle Scholar
Boretius, T., Schuettler, M. and Stieglitz, T., Artif. Organs 35, 245248 (2011).CrossRefGoogle Scholar