Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-24T15:32:05.885Z Has data issue: false hasContentIssue false

Fabrication of silicon nanowires by ion beam irradiation

Published online by Cambridge University Press:  21 March 2013

J. Song*
Affiliation:
Centre for Ion Beam Applications (CIBA), Department of Physics, National University of Singapore, Singapore 117542
Z. Y. Dang
Affiliation:
Centre for Ion Beam Applications (CIBA), Department of Physics, National University of Singapore, Singapore 117542
S. Azimi
Affiliation:
Centre for Ion Beam Applications (CIBA), Department of Physics, National University of Singapore, Singapore 117542
M. B. H. Breese*
Affiliation:
Centre for Ion Beam Applications (CIBA), Department of Physics, National University of Singapore, Singapore 117542 Singapore Synchrotron Light Source (SSLS), 5 Research Link, National University of Singapore, 5 Research Link, Singapore 117603
*
*Corresponding author: Song Jiao: [email protected]
Get access

Abstract

Silicon nanowires are becoming more important because of increasing requirements of the small scale and dense integration of devices. We report a top-down fabrication method for silicon nanowires using high-energy ion beam irradiation of bulk p-type silicon followed by electrochemical etching. Silicon nanowires with a diameter of ∼50nm have been fabricated and densely patterned nanowire arrays fabricated in different resistivity silicon wafers. With a suitable support structure, free standing silicon nanowires are also achieved. We investigate results depending on silicon wafer resistivity and location within the irradiated area.

Type
Articles
Copyright
Copyright © Materials Research Society 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Zhou, X. T., Hu, J. Q., Li, C. P., Ma, D. D. D., Lee, C. S. and Lee, S. T., Chemical Physics Letters, 369, 220 (2003).CrossRefGoogle Scholar
Cui, Y., Wei, Q., Park, H., Lieber, C. M., Science 293, 1289 (2001).CrossRefGoogle Scholar
Hicks, L. D., and Dresselhaus, M. S., Physical. Review B, 47, 24, (1993).Google Scholar
Li, Y., Buddharaju, K., Singh, N., Lo, G. Q. and Lee, S. J., in IPEC, 2010 Conference Proceedings, p. 1181 (2010).CrossRefGoogle Scholar
Amthor, J., Horn, O., Lipka, T. and Müuller, J., Proc. of SPIE 7366, 73661Y (2009).CrossRefGoogle Scholar
Leisner, M., Cojocaru, A., Ossei-Wusu, E., Carstensen, J., Foll, H., Nanoscale Res Lett, 5,1502 (2010).CrossRefGoogle Scholar
Eisenhawer, B., Sensfuss, S., Sivakov, V., Pietsch, M., Andra, G. and Falk, F., Nanotechnology, 22 315401, (2011).CrossRefGoogle Scholar
Rurali, R., Rev. Mod. Phys., 82, 1, (2010).CrossRefGoogle Scholar
Sham, T. K., Naftel, S. J., Kim, P.-S. G., Sammynaiken, R., and Tang, Y. H., Physical. Review B, 70, 045313 (2004).CrossRefGoogle Scholar
Bhattacharya, S. and Banerjee, D., Appl. Phys. Lett., 85, 11, (2004).Google Scholar
Wagner, R. S. and Ellis, W. C., Appl. Phys. Lett. 4, 89 (1964).CrossRefGoogle Scholar
Shan, Y. and Fonash, S. J., ACS NANO. 2 ,3, 429434, (2008).CrossRefGoogle Scholar
Stelzner, T., Andra, G., Wendler, E., Wesch, W., Scholz, R., Gosele, U. and Christiansen, S., Nanotechnology 17, 2895 (2006).CrossRefGoogle Scholar
Hutagalung, S. D., Tan, A. S. Y., Tan, R. Y., Wahab, Y., Proc. of SPIE, 7743 774305 (2010).CrossRefGoogle Scholar
Vu, X. T., GhoshMoulick, R., Eschermann, J. F., Stockmann, R., Offenhäusser, A., Ingebrandt, S., Sensors and Actuators B, 144, 354, (2010).CrossRefGoogle Scholar
Kedzierski, J., Bokor, J., Kisielowski, C., J. Vac. Sci. Technol. B, 15, 6, (1997).CrossRefGoogle Scholar
Breese, M. B. H., Champeaux, F. J. T., Teo, E. J., Bettiol, A. A., and Blackwood, D. J. Phys. Rev. B. 73, 035428 (2006).CrossRefGoogle Scholar
Azimi, S., Song, J., Dang, Z. Y., Liang, H. D. and Breese, M. B. H., J. Micromech. Microeng. 22, 113001(2012).CrossRefGoogle Scholar
Ow, Y. S., Liang, H. D., Azimi, S., and Breese, M. B. H., Electrochem. Solid-State Lett. 14 (5) D45D47 (2011).CrossRefGoogle Scholar
Azimi, S., Breese, M. B. H., Dang, Z. Y., Yan, Y., Ow, Y. S. and Bettiol, A. A., J. Micromech. Microeng. 22, 015015 (2012).CrossRefGoogle Scholar
Teo, E. J., Bettiol, A. A., Yang, P., Breese, M. B. H., Xiong, B. Q., Mashanovich, G. Z., Headley, W. R., and Reed, G. T., Opt. Lett. 34, 659 (2009).CrossRefGoogle Scholar
Song, J., Dang, Z. Y., Azimi, S., Breese, M. B. H., Forneris, J., and Vittone, E., ECS Journal of Solid State Science and Technology, 1 (2), P66P69, (2012).CrossRefGoogle Scholar
Mangaiyarkarasi, D., Ow, Y. S., Breese, M. B. H., Fuh, V.L., Xioasong, E.T., Opt. Express. 16, 12757 (2008).CrossRefGoogle Scholar