Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-28T10:49:38.995Z Has data issue: false hasContentIssue false

Fabrication of Si-Ge Compound Nanowires by the FZ Melting Vapor Method

Published online by Cambridge University Press:  11 February 2011

Quanli Hu
Affiliation:
National Institute for Materials Science, 1–2–1 Sengen, Tsukuba, Ibaraki 305–0047, Japan
Hiroshi Araki
Affiliation:
National Institute for Materials Science, 1–2–1 Sengen, Tsukuba, Ibaraki 305–0047, Japan
Hiroshi Suzuki
Affiliation:
National Institute for Materials Science, 1–2–1 Sengen, Tsukuba, Ibaraki 305–0047, Japan
Nobuhiro Ishikawa
Affiliation:
National Institute for Materials Science, 1–2–1 Sengen, Tsukuba, Ibaraki 305–0047, Japan
Wen Yang
Affiliation:
National Institute for Materials Science, 1–2–1 Sengen, Tsukuba, Ibaraki 305–0047, Japan
Tetsuji Noda
Affiliation:
National Institute for Materials Science, 1–2–1 Sengen, Tsukuba, Ibaraki 305–0047, Japan
Get access

Abstract

A simple method, floating zone melting vapor, was used for fabricating nanowires of Si-Ge material. Single-crystalline nanowires were successfully synthesized. TEM images of these nanowires indicated that each nanowire consists of an inner single-crystalline core and an outer layer. An observation using high-resolution transmission electron microscopy (HRTEM) showed that almost all nanowires have a similar growth orientation to the crystalline core: [210]. The coexistence of germanium-self-catalyzed and oxide-assisted mechanisms has also been suggested.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Morales, A.M. and Lieber, C.M., Science 279, 208(1998).Google Scholar
2. Wong, E.W., Sheehan, P.E. and Lieber, C. M., Science 277, 1971(1997).Google Scholar
3. Hu, J., Odom, T.W. and Lieber, C.M., Accounts of Chemical Research 32, 435(1999).Google Scholar
4. Paul, DJ., Adv. Mater. 11, 191(1999).Google Scholar
5. Deng, C., Singmon, T.W., Giust, GK., Wu, J.C. and Wybourne, M.N., J. Vac. Sci. Technol. A 14, 1860(1996).Google Scholar
6. Hu, Q., Li, G., Suzuki, H., Araki, H. and Noda, T., Japanese Journal of Applied Physics 41, L7 (2002).Google Scholar
7. Zhang, Y.F., Tang, Y.H., Wang, N., Lee, C.S., Yu, D.P., Bello, I. and Lee, S.T., Mat. Res. Soc. Symp. Proc. 507, 993(1998).Google Scholar
8. Dismukes, J.P., Ekstrom, L. and Paff, R.J., Journal of Physical Chemistry 68, 3021(1964)Google Scholar
9. Wang, N., Zhang, Y.F., Tang, Y.H., Lee, C.S. and Lee, S.T., Appl. Phys. Lett. 73, 3902(1998).Google Scholar
10. Olesinski, R.W. and Abbaschian, GJ., Bull. Alloy Phase Diagr. 5, 180(1984).Google Scholar
11. Peng, H.Y., Wang, N., Shi, W.S., Zhang, Y.F., Lee, C.S. and Lee, S.T., J. Appl. Phys. 89, 727(2001).Google Scholar
12. Tan, T.Y., Lee, S.T. and Gösele, U., Appl. Phys. A 74, 423(2002).Google Scholar