Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-28T10:29:16.900Z Has data issue: false hasContentIssue false

Fabrication of Piezoelectric PZT Film Actuators on Thin Metal Plates Prepared by a Hydrothermal Method

Published online by Cambridge University Press:  26 February 2011

Tuyoshi Aoki
Affiliation:
[email protected], Fujitsu Ltd., Advanced Materials Laboratory, 10-1 Moriyonosato, Wakamiya, Atsugi, 243-0197, Japan, +81-46-250-8362, +81-46-248-8812
Shigeyoshi Umemiya
Affiliation:
[email protected], Fujitsu Ltd., Atsugi, 243-0197, Japan
Masaharu Hida
Affiliation:
[email protected], Fujitsu Ltd., Atsugi, 243-0197, Japan
Keisuke Satoh
Affiliation:
[email protected], Fujitsu Ltd., Atsugi, 243-0197, Japan
Masao Kondo
Affiliation:
[email protected], Fujitsu Ltd., Atsugi, 243-0197, Japan
Kazuaki Kurihara
Affiliation:
[email protected], Fujitsu Ltd., Atsugi, 243-0197, Japan
Get access

Abstract

Hydrothermal lead zirconate titanate (Pb(Zr,Ti)O3: PZT) films with a thick of about 10 μm on both a Ti foil and a Ti layer sputtered stainless steel (SS) foil were obtained. Both PZT films showed same morphology and crystalinity. After repeating the hydrothermal process, the films were formed to cantilever shape. A tip displacement measurement of the cantilevers was carried out in order to estimate transverse piezoelectric constant (d31). The obtained d31 value of the PZT films on Ti sputtered SS foils is -29 pm/V, which is larger than that on Ti foil (-24 pm/V). Amorphous layer consist of Pb and Ti was observed at the interfaces between the both PZT film and the Ti metals. The thickness of the layer for PZT film on Ti foil (350 nm) is thicker than that for PZT film on SS foil (200 nm). The relative permittivity of the layer is estimated to be small compared with that of PZT. Accordingly, the effective electric field for PZT layer is decreased. The deference of d31 values between the obtained PZT films is thought to be attributed to the thickness of amorphous layer.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Viebmann, A., Franke, R., Bruck, G.H. and Jung, P., IET Conf. Pub. 2006, 21 (2006).Google Scholar
2. Reddy, Y.B., AIP Conf. Proc. 755, 215 (2005).Google Scholar
3. Yamanaka, K., Kurihara, K., Akasegawa, A. and Kondo, M., J. of Superconductivity, (in printing).Google Scholar
4. Yamanaka, K., Akasegawa, A., Kai, M. and Nakanishi, T., IEEE trans. Appl. Supercond. 15, 1024 (2006).Google Scholar
5. Lefevre, M.J. and Speck, J.S., Schwartz, R.W., Dimos, D. and Lockwood, S.J., J. Mater. Res. 11, 2076 (1996).Google Scholar
6. Watanabe, S., Fujiu, T. and Fujii, T., Appl. Phys. Lett. 66, 1481 (1995).Google Scholar
7. Akedo, J. and Lebedev, M., Appl. Phys. Lett. 77, 1710 (2000).Google Scholar
8. Shimomura, K., Tsurumi, T., Ohba, Y. and Daimon, M., Jpn. J. Appl. Phys. 30, 2174 (1991).Google Scholar
9. Morita, T., Kurosawa, M.K. and Higuchi, T., IEEE Trans. Ultrason. Ferroelect., Freq. Contr. 45, 1178 (1998).Google Scholar
10. Ahn, S.H., Jung, W.W. and Choi, S.K., Appl Phys.Lett. 86, 172901 (2005).Google Scholar
11. Kanno, I., Kotera, H. and Wasa, K., Sens. and Actuators A 107, 68 (2003).Google Scholar
12. Kanda, T., Kobayashi, Y., Kurosawa, M.K. and Higuchi, T., Jpn. J. Appl. Phys. 42, 3014 (2003).Google Scholar
13. Kanda, T., Kobayashi, Y., Kurosawa, M. K., Yasui, H. and Higuchi, T., Jpn. J. Appl. Phys. 40, 5543 (2001).Google Scholar
14. Larsen, P.K., Dormans, G.J.M., Taylor, D.J. and Veldhoven, P.J. van, J. Appl. Phys. 76, 2405 (1994).Google Scholar
15. Kim, S.H., Chae, B.G., Yang, Y.S., Lee, S.J., Kim, J.P., Takashige, M. and Jang, M.S., Jpn. J. Appl. Phys. 37, 234 (1998).Google Scholar