Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-28T08:08:19.796Z Has data issue: false hasContentIssue false

Fabrication of Large-Area Organic Photovoltaics Using a Draw-Bar Coating Technique

Published online by Cambridge University Press:  22 February 2013

Cara J. Mulligan
Affiliation:
Centre for Organic Electronics, University of Newcastle, Callaghan, NSW 2308, Australia.
Nicolas C. Nicolaidis
Affiliation:
Centre for Organic Electronics, University of Newcastle, Callaghan, NSW 2308, Australia. CSIRO Energy Centre, Mayfield West, NSW 2304, Australia.
Ben Vaughan
Affiliation:
Centre for Organic Electronics, University of Newcastle, Callaghan, NSW 2308, Australia. CSIRO Energy Centre, Mayfield West, NSW 2304, Australia.
Xiaojing Zhou
Affiliation:
Centre for Organic Electronics, University of Newcastle, Callaghan, NSW 2308, Australia.
Warwick J. Belcher
Affiliation:
Centre for Organic Electronics, University of Newcastle, Callaghan, NSW 2308, Australia.
Paul C. Dastoor
Affiliation:
Centre for Organic Electronics, University of Newcastle, Callaghan, NSW 2308, Australia.
Get access

Abstract

Organic photovoltaic (OPV) devices were fabricated using a novel draw bar premetered coating technique, whereby a meniscus of fluid is dragged across a substrate to leave a trailing wet film. The results showed that coating thickness could be controlled by varying the coating speed, rod diameter, gap height, amount of solution injected, rod diameter, rod composition material and number of layers. Devices on PET with active areas of 10 cm2 and active layer thicknesses ranging from 35 to 475 nm were produced using the technique. Active layers of 160 nm were the optimum of thicknesses trialled, achieving typical best efficiencies around 0.4 %. Devices with films thinner than 90 nm did not function due to short-circuiting. The draw-bar coating method has the advantage of allowing controlled deposition of a wide range of film thicknesses with no solution wastage.

Type
Articles
Copyright
Copyright © Materials Research Society 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Krebs, F.C. Sol. Energ. Mat. Sol. Cells 93: 465475 (2009)CrossRefGoogle Scholar
Blankenburg, L., Schultheis, K., Schache, H., Sensfuss, S. and Schrödner, M. Sol. Energ. Mat. Sol. Cells 93: 476483 (2009)CrossRefGoogle Scholar
Ding, J.M., Vornbrock, A.F., Ting, C., and Subramanian, V. Sol. Energ. Mat. Sol. Cells 93: 459464 (2009)CrossRefGoogle Scholar
Kopola, P., Aernouts, T., Guillerez, S., Jin, H., Tuomikoski, M., Maaninen, A. and Hast, J. Sol. Energ. Mat. Sol. Cells 94: 16731680 (2010)CrossRefGoogle Scholar
Kopola, P., Aernouts, T., Sliz, R., Guillerez, S., Ylikunnari, M., Cheyns, D., Välimäki, M., Tuomikoski, M., Hast, J., Jabbour, G., Myllylä, R. and Maaninen, A. Sol. Energ. Mat. Sol. Cells 95: 13441347 (2011)CrossRefGoogle Scholar
Park, S., Kang, Y., Lee, S., Kim, D., Kim, J.-K., Kim, J.-H. and Kang, J. Sol. Energ. Mat. Sol. Cells 95: 852855 (2011)CrossRefGoogle Scholar
Levich, V.G. Physicochemical Hydrodynamics Prentice Hall, Englewood Cliffs, N.J., 2nd edition (1962)Google Scholar
Teletzke, G.F., Davis, H.T. and Scriven, L.E. Rev. Phys. Appl. 23: 9891007 (1988)CrossRefGoogle Scholar
Berteloot, G., Pham, C.-T., Daerr, A., Lequeux, F. and Limat, L. Europhys. Lett. 83(1): 14003 (2008)CrossRefGoogle Scholar
Thompson, H.M., Kapur, N., Gaskell, P.H., Summers, J.L. and Abbott, S.J. Chem. Eng. Sci. 56: 46274641 (2001)CrossRefGoogle Scholar
Moulé, A.J., Bonekamp, J.B. and Meerholz, K. J. Appl. Phys. 100: 094503 (2006)CrossRefGoogle Scholar
Winder, C. and Sariciftci, N. S. J. Mater. Chem. 14: 10771086 (2004)CrossRefGoogle Scholar