Hostname: page-component-7bb8b95d7b-wpx69 Total loading time: 0 Render date: 2024-09-07T14:32:53.558Z Has data issue: false hasContentIssue false

Fabrication of Graphene Network via Nanoimprint Lithography

Published online by Cambridge University Press:  30 March 2012

Liumin Zou
Affiliation:
Research Center for Integrated Quantum Electronics, Hokkaido University, Sapporo, 060-8628, Japan
Keita Konishi
Affiliation:
Research Center for Integrated Quantum Electronics, Hokkaido University, Sapporo, 060-8628, Japan
Morihisa Hoga
Affiliation:
Dai Nippon Printing Co. Ltd., Japan
Kanji Yoh
Affiliation:
Research Center for Integrated Quantum Electronics, Hokkaido University, Sapporo, 060-8628, Japan
Get access

Abstract

We have investigated the hexagonal graphene network (GNW) structure for the possible opening of the graphene bandgap. We have fabricated GNW by nanoimprint lithography and compared with previous GNW results based on electron beam (EB) lithography. Hall-bar device with GNW was successfully fabricated using nanoimprint lithography and verified mobility of 1,220 cm2 V-1 s-1 with graphene nanoribbon (GNR) width of 40 nm. The mobility improvement compared with GNW by EB lithography indicates the effectiveness of nanoimprint method for the hexagonal GNW approach.

Keywords

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Katsnelson, M. I., Grigorieval, I. V., Dubonos, S.V., and Firsov, A. A., Nature 438, 197 (2005).Google Scholar
2. Zhang, Y., Tan, Y., Stormer, H. L., and Kim, P., Nature 438, 201 (2005).Google Scholar
3. Morozov, S. V., Novoselov, K. S., Katsnelson, M. I., Schedin, F., Elias, D. C., Jaszczak, J. A., and Geim, A. K., Phys. Rev. Lett. 100, 016602 (2008).Google Scholar
4. Han, M. Y., Özyilmaz, B., Zhang, Y., and Kim, P., Phys. Rev. Lett. 98, 206805 (2007).Google Scholar
5. Li, X., Wang, X., Zhang, L., Lee, S., and Dai, H., Science 319, 1229 (2008).Google Scholar
6. Son, Y., Cohen, M. L., and Louie, S. G., Phys. Rev. Lett. 97, 216803 (2006).Google Scholar
7. Nakada, K., and Fujita, M, Phys. Rev. B 54, 17954 (1996).Google Scholar
8. Zou, L., Konishi, K., and Yoh, K., Jpn. J. Appl. Phys. 50, 06GE14 (2011).Google Scholar
9. Bai, J., Zhang, X., Jiang, S., Huang, Y., and Duan, X.: Nat. Nano. 5, 190 (2010).Google Scholar
10. Cheng, J., Mayes, A., and Ross, C.: Nat. Mater. 3, 823 (2004).Google Scholar
11. Konishi, K., and Yoh, K., Physica E 42, 2792 (2010).Google Scholar