Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-12T05:25:26.105Z Has data issue: false hasContentIssue false

Fabrication of Dispersed Permalloy Nanoparticles by Pulsed Laser Ablation in Aqua

Published online by Cambridge University Press:  15 March 2011

Ruqiang Bao
Affiliation:
Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
Zijie Yan
Affiliation:
Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
Yong Huang
Affiliation:
Department of Mechanical Engineering, Clemson University, Clemson, SC 29634, USA
Douglas B. Chrisey
Affiliation:
Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
Get access

Abstract

Permalloy (Ni81Fe19) nanoparticles with diameters of hundreds of nanometers have been successfully fabricated by pulsed laser ablation (PLA) in air, distilled water, pure ethanol and sodium dodecyl sulfate (SDS) aqueous solutions. The permalloy nanoparticles made in SDS solutions are typically spherical in shape. Lower laser energy with lower frequency leads to the formation of smaller permalloy nanoparticles. Higher concentration of SDS results in smaller nanoparticles. Lastly, we found some unusual permalloy nanoparticles with interesting morphologies made by PLA in air, distilled water and ethanol.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Pfeifer, F., Radeloff, C., J. Magn. Magn. Mater. 19, 190 (1980).Google Scholar
[2] Ammar, M., LoBue, M., Snoeck, E., Hÿtch, M., Champion, Y., Barrué, R. and Mazaleyrat, F., J. Magn. Magn. Mater. 320, 716 (2008).Google Scholar
[3] Cushing, B. L., Golub, V., O'Connor, C. J., J. Phys. Chem. Solids 65, 825 (2004).Google Scholar
[4] Chrisey, D. B., Hubler, G. K., Pulsed Laser Deposition of Thin Films (John Wiley & Sons, Inc., New York, 1994), p. 10.Google Scholar
[5] Yang, G.W., Progress in Materials Science 52, 648 (2007).Google Scholar
[6] Ogale, S. B., Malshe, A. P., Kanetkar, S. M., Kshirsagar, S.T., Solid State Comm. 84, 371 (1992).Google Scholar
[7] Simakin, A. V., Voronov, V. V., Shafeev, G. A., Brayner, R., Bozon-Verduraz, F., Chem. Phys. Lett. 348, 182(2001)Google Scholar
[8] Pyatenko, A., Shimokawa, K., Yamaguchi, M., Nishimura, O., Suzuki, M., Appl. Phys. A 79, 803 (2004).Google Scholar
[9] Izgaliev, A.T., Simakin, A.V., Shafeev, G.A., Quantum Electronics 34, 47 (2004).Google Scholar
[10] Liang, C., Shimizu, Y., Sasaki, T., Koshizaki, N., J. Phys. Chem. B 107, 9220 (2003).Google Scholar
[11] Mafune, F., Kohno, J., Takeda, Y., Kondow, T., Sawabe, H., J. Phys. Chem. B 105, 5114 (2001);J. Phys. Chem. B 106, 7575 (2002); J. Phys. Chem. B 107, 12589 (2003).Google Scholar
[12] Lee, J., Becker, M. F., Brock, J. R., Keto, J. W., Walser, R M., IEEE Transactions on Magnetics, 32, 4484 (1996).Google Scholar
[13] Fraerman, A. A., Gusev, S. A., Mazo, L. A., Nefedov, I. M., Nozdrin, Y. N., Karetnikova, I. R., Sapozhnikov, M. V., Shereshevskii, I. A., Sukhodoev, L. V., Phys. Rev. B 65, 064424 (2002).Google Scholar
[14] Mafune, F., Kohno, J., Takeda, Y., Kondow, T., Sawabe, H., J. Phys. Chem. B 104, 9111 (2000).Google Scholar
[15] Mafune, F., Kohno, J., Takeda, Y., Kondow, T., J. Phys. Chem. B 107, 4218 (2003).Google Scholar
[16] Becker, M. F., Brock, J. R., Cai, H., Henneke, D. E., Keto, J. W., Lee, J., Nichols, W. T., Glicksman, H. D., Nanostructured Materials 10, 853 (1998).Google Scholar