Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-24T18:53:46.831Z Has data issue: false hasContentIssue false

Fabrication of a Large-area-patterned Monolayer of Polytetrafluoroethylene Nanoparticles by Surface Charge Induced Colloidal deposition

Published online by Cambridge University Press:  09 April 2014

Chuan Du
Affiliation:
State Key Laboratory of Tribology, Tsinghua University, Beijing, 100084, P.R. China
Jiadao Wang
Affiliation:
State Key Laboratory of Tribology, Tsinghua University, Beijing, 100084, P.R. China
Darong Chen
Affiliation:
State Key Laboratory of Tribology, Tsinghua University, Beijing, 100084, P.R. China
Get access

Abstract

A facile and novel method of fabricating large-area-patterned monolayer of polytetrafluoroethylene(PTFE) nanoparticles was achieved using surface charge induced colloidal deposition. Chemical processes of amination and hydroxylation were used to make the silicon substrates positively and negatively charged, respectively, while the PTFE colloidal nanoparticles were anisotropic and negatively charged. After colloidal deposition, an ordered monolayer with microholes was formed on the amination surface, while an island-like monolayer was achieved on the hydroxylation surface. Both of the two kinds of monolayers were as large as 1.5 square centimeters. It is worth pointing out that these large-area-patterned monolayers were fabricated without any templates and the whole process only took several hours. The formation mechanism of the different structures can be generally attributed to the cooperation and competition of three-body, two-body and particle-wall interactions. It is believed that the interesting patterned monolayer formation mechanism, high production efficiency, good adaptability and quality will make this novel method attractive.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Lei, Y., Yang, S., Wu, M. and Wilde, G., Chem. Soc. Rev. 40, 12471258 (2011).10.1039/B924854BCrossRefGoogle Scholar
Henzie, J., Barton, J. E., Stender, C. L. and Odom, T. W., Accounts Chem. Res. 39, 249257 (2006).10.1021/ar050013nCrossRefGoogle Scholar
Ye, X. and Qi, L., Nano Today 6, 608631 (2011).10.1016/j.nantod.2011.10.002CrossRefGoogle Scholar
Cui, T., Hua, F. and Lvov, Y., Sensors Actuat. A-Phys. 114, 501504 (2004).10.1016/j.sna.2004.01.023CrossRefGoogle Scholar
Jia, L., Cai, W. and Wang, H., J. Mater. Chem. 19, 73017307 (2009).10.1039/b908068fCrossRefGoogle Scholar
Maury, P. A., Reinhoudt, D. N. and Huskens, J., Curr. Opin. Colloid In. 13, 7480 (2008).10.1016/j.cocis.2007.08.013CrossRefGoogle Scholar
Masuda, Y., Itoh, T. and Koumoto, K., Langmuir 21, 44784481 (2005).10.1021/la050075mCrossRefGoogle Scholar
Ogi, T., Modesto-Lopez, L. B., Iskandar, F. and Okuyama, K., Colloids Surf. A 297, 7178 (2007).10.1016/j.colsurfa.2006.10.027CrossRefGoogle Scholar
Maury, P., Escalante, M., Reinhoudt, D. N. and Huskens, J., Adv. Mater. 17, 27182723 (2005).10.1002/adma.200501072CrossRefGoogle Scholar
Yang, J., Ichii, T., Murase, K. and Sugimura, H., Langmuir 28, 75797584 (2012).10.1021/la301042yCrossRefGoogle Scholar
Janssen, D., De Palma, R., Verlaak, S., Heremans, P. and Dehaen, W., Thin Solid Films 515, 14331438 (2006).10.1016/j.tsf.2006.04.006CrossRefGoogle Scholar
Qin, M., Hou, S., Wang, L., Feng, X., Wang, R., Yang, Y., Wang, C., Yu, L., Shao, B. and Qiao, M., Colloids Surf. B Biointerfaces 60, 243249 (2007).10.1016/j.colsurfb.2007.06.018CrossRefGoogle Scholar
Zhang, X., Zhang, J., Zhu, D., Li, X., Zhang, X., Wang, T. and Yang, B., Langmuir 26, 1793617942 (2010).10.1021/la103778mCrossRefGoogle Scholar
Maury, P., Escalante, M., Reinhoudt, D. N. and Huskens, J., Adv. Mater. 17, 27182723 (2005).10.1002/adma.200501072CrossRefGoogle Scholar
Merrill, J. W., Sainis, S. K. and Dufresne, E. R., Phys. Rev. Lett. 103, 138301 (2009).10.1103/PhysRevLett.103.138301CrossRefGoogle Scholar
Brunner, M., Dobnikar, J., von Grünberg, H. and Bechinger, C., Phys. Rev. Lett. 92, 78301 (2004).10.1103/PhysRevLett.92.078301CrossRefGoogle Scholar
Hynninen, A., Dijkstra, M. and van Roij, R., Phys. Rev. E 69, 61407 (2004).10.1103/PhysRevE.69.061407CrossRefGoogle Scholar
Dobnikar, J., Chen, Y., Rzehak, R. and von Grünberg, H., J. Phys. Condens. Mat. 15, S263 (2003).10.1088/0953-8984/15/1/335CrossRefGoogle Scholar
Israelachvili, J. N., (Academic press, 2011) pp. 312313.Google Scholar
Walker, D. A., Kowalczyk, B., de La Cruz, M. O. and Grzybowski, B. A., Nanoscale 3, 13161344 (2011).10.1039/C0NR00698JCrossRefGoogle ScholarPubMed
Kusaka, Y, Ishida, N, Ushijima, H. Soft Matter 11, 31553163 (2013).10.1039/c2sm27486hCrossRefGoogle Scholar