Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-12T05:38:23.085Z Has data issue: false hasContentIssue false

Fabrication and Characterization of Individually Controlled Multi-Pixel Carbon Nanotube Cathode Array Chip for Micro-RT Application for Cancer Research

Published online by Cambridge University Press:  01 February 2011

Sigen Wang
Affiliation:
[email protected], University of North Carolina, Department of Radiation Oncology, CB 7512, Chapel Hill, NC, 27599-7512, United States, 9199661101, 9199667681
Zhijun Liu
Affiliation:
[email protected], University of North Carolina, Department of Physics and Astronomy, Chapel Hill, NC, 27599, United States
Lei An
Affiliation:
[email protected], University of North Carolina, Department of Physics and Astronomy, Chapel Hill, NC, 27599, United States
Otto Zhou
Affiliation:
[email protected], University of North Carolina, Department of Physics and Astronomy, Chapel Hill, NC, 27599, United States
Sha Chang
Affiliation:
[email protected], University of North Carolina, Department of Radiation Oncology, Chapel Hill, NC, 27599, United States
Get access

Abstract

Carbon nanotubes (CNTs) have attracted considerable attention as future field emission electron sources for a variety of applications due to their high aspect ratio and robust structure. One application is multi-pixel beam array x-ray micro-RT (radiotherapy) for small animal irradiation. The x-ray pixel beam array is produced by a CNT pixel cathode array. One challenge in the micro-RT fabrication is how to fabricate individually addressable multi-pixel CNT cathode array on wafer with high pixel beam packing density and high emission current. We report here the development of a new CNT field emission multi-pixel cathode array chip, a vital component of the multi-pixel beam x-ray micro-RT system under development. The CNT field emission cathode array has up to 25 (5 × 5) individually addressable cathode pixels, each is 1 mm in diameter and with center-to-center distance of 2 mm. The fabrication is a two-step process: first a Cr/Cu electrical contact was fabricated on Si substrates with a 5 μm SiO2 dielectric layer using photolithography; and second the CNTs were selectively deposited on 1 mm-diameter predefined Cr/Cu contact dots by using a combined photolithography/electrophotoresis technique. The electron pixel beams produced from the multi-pixel arrays are uniform and individually controllable and can be used for micro-RT application.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Stojadinovic, S., Low, D. A., Vicic, M., Mutic, S., Deasy, J. O., Hope, A. J., Parikh, P. J., and Grigsby, P. W., Med. Phys. 33 (10), 3834 (2006).Google Scholar
2. Deng, H., Kennedy, C. W., Armour, E., Tryggestad, E., Ford, E., McNutt, T., Jiang, L., and J. Wong, Phys. Med. Biol. 52, 2729 (2007).Google Scholar
3. Yue, G. Z., Qiu, Q., Gao, B., Cheng, Y., Zhang, J., Shimoda, H., Chang, S., Lu, J. P., and Zhou, O., Appl. Phys. Lett. 81, 355 (2002).Google Scholar
4. Zhang, J., Cheng, Y., Lee, Y. Z., Gao, B., Qiu, Q., Lin, W., Lalush, D., Lu, J. P., and Zhou, O., Rev. Sci. Instrum. 76, 094301 (2005).Google Scholar
5. Liu, Z., Zhang, J., Yang, G., Cheng, Y., Zhou, O., and Lu, J. P., Rev. Sci. Instrum. 77, 054302 (2006).Google Scholar
6. Zhang, J., Yang, G., Lee, Y. Z., Cheng, Y., Gao, B., Qiu, Q., Lu, J. P., and Zhou, O., Proc. SPIE. 6142, 614204 (2006).Google Scholar
7. Chang, S., Zhang, J., Bordelon, D., Schrieber, E., Cox, A., and Zhou, O., Med. Phys. 33, 2271 (2006).Google Scholar
8. Zhang, J., Yang, G., Lee, Y. Z., Chang, S., Lu, J. P., and Zhou, O., Appl. Phys. Lett. 89, 064106 (2006)Google Scholar
9. Lalush, D. S., Quan, E., Rajaram, R., Zhang, J., Lu, J. P., and Zhou, O., Proceeding of 2006 IEEE International Symposium on Biomedical Imaging, 1180 (2006).Google Scholar
10. Chang, S., Zhang, J., Bordelon, D., Schreiber, E., Cox, A., Zhou, O., Radiation Protection Dosimetry, 122 (2006), 323.Google Scholar
11. Jung, J. E., Choi, J. H., Park, Y. J., Lee, H. W., Jin, Y. W., Chung, D. S., Park, S. H., Jang, J. E., Hwang, S. Y., Ko, T. Y., Choi, Y. S., Cho, S. H., Lee, C. G., You, J. H., Lee, N. S., Yoo, J. B., and Kim, J. M., J. Vac. Sci. Technol. B 21, 375 (2003).Google Scholar
12. Jung, M. –S., Ko, Y. K., Jung, D. –H., Choi, D. H., Jung, H. T., Heo, J. N., Sohn, B. H., Jin, Y. W., and Kim, J., Appl. Phys. Lett. 87, 013114 (2005).Google Scholar
13. Gao, B., Yue, G. Z., Qiu, Q., Cheng, Y., Shimoda, H., Fleming, L., and Zhou, O., Adv. Mater. 13, 1770 (2001).Google Scholar
14. Oh, S. J., Zhang, J., Cheng, Y., Shimoda, H., and Zhou, O., Appl. Phys. Lett. 84, 3738 (2004).Google Scholar
15. Khan, F. M., The physics of Radiation Therapy (Williams & Wilkins, Baltimore, 1984).Google Scholar