Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-28T10:48:01.475Z Has data issue: false hasContentIssue false

Fabrication and Characteristics of Low Doped Gallium-Zinc Oxide Thin Film Transistor

Published online by Cambridge University Press:  01 February 2011

Ved Prakash Verma
Affiliation:
[email protected], Florida International University, Mechanical Engineering, 10555, West Flagler Street, miami, FL, 33174, United States
Dohyun Kim
Affiliation:
[email protected], Florida International University, Mechanical Engineering, 10555, West Flagler Street, miami, FL, 33174, United States
Minhyon Jeon
Affiliation:
[email protected], Inje University, School of Nanoengineering, Gimhae, 621-749, Korea, Republic of
Wonbong Choi
Affiliation:
[email protected], Florida International University, Mechanical Engineering, 10555, West Flagler Street, miami, FL, 33174, United States
Get access

Abstract

Thin film transistor (TFT) with low (1%wt) Ga-doped ZnO (GZO) as an active channel on SiO2/Si substrate has been fabricated at room temperature by rf-magnetron sputtering. The devices show a mobility of 5.7 cm2/V.s at low operation voltage (<5V), a low turn-on voltage of 0.5 V and sub-threshold swing of 85 mV/decade. The TFT device performance is significantly affected by vacuum-level and annealing temperature, which can be attributed to the removal of chemisorped oxygen in the active channel surface. Low doped GZO is a new class of high performance TFT channel material that is easy to process.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Li, Y. J., Kwon, Y. W., Jones, M., Heo, Y. W., Zhou, J., Luo, S. C., Holloway, P. H., Douglas, E., Norton, D. P., Park, Z. and Li, S., Semicond. Sci. Technol. 20, 720 (2005).Google Scholar
2. Hoffman, R. L., Norris, B. J. and Wager, J. F., Appl. Phys. Lett. 82, 733 (2003).Google Scholar
3. Nomura, K., Ohta, H., Takagi, A., Kamiya, T., Hirano, M. and Hosono, H., Nature. 432, 488 (2004).10.1038/nature03090Google Scholar
4. Bundesmann, C., Ashkenov, N., Schubert, M., Spemann, D., Butz, T., Kaidashev, E. M., Lorenz, M., and Grundmann, M., Appl. Phys. Lett. 83, 1974 (2003).Google Scholar
5. Egerton, E. J., Sood, A. K., Singh, R., Puri, Y. R., Davis, R. F., Pierce, J., Look, D. C. and Steiner, T., J. Electronic Materials. 34, 949 (2005).Google Scholar
6. Ko, H. J., Chen, Y. F., Hong, S.K., Wenisch, H., Ya, T. and Look, D. C., Appl. Phys. Lett. 77,3761 (2000).Google Scholar
7. Fortunato, E. M. C., Barquinha, P. M. C., Pimentel, A. C. M. B. G., Gonçalves, A. M. F., J, A.. Marques, S., Martins, R. F. P. and Pereira, L. M. N., Appl. Phys. Lett. 85, 2541 (2004).Google Scholar
8. Lee, B.T., Kim, T. H. and Jeong, S. H., J. Phys. D: Appl. Phys. 39, 957 (2006).Google Scholar
9. Gomez, H. and de la, M. Olvera, L., Material Science & Engineering. B 134, 20 (2006).Google Scholar
10. Shan, F. K., Liu, Z. F., Liu, G. X., Lee, W. J., Lee, G. H., Kim, I. S., Shin, B. C. and Yu, Y. S., J. Electroceramics. 13, 195 (2004).Google Scholar
11. Carcia, P.F., McLean, R. S., Reilly, M. H. and Nunes, G. Jr, Appl. Phys. Lett. 82, 1117, (2003).Google Scholar
12. Dimitrakopoulos, C. D., and Mascaro, D. J., IBM J. Res. Dev. 45, 11, (2001).Google Scholar
13. Yagi, I., Tsukagoshi, K. and Aoyagi, Y., Appl. Phys. Lett. 86, 103502, (2005).Google Scholar
14. Fan, Z. Y., Wang, D. W., Chang, P. C., Tseng, W. Y. and Lu, J. G., Appl. Phys. Lett. 85, 5923,(2004).Google Scholar
15. Lagowski, J., Sproles, E.S. Jr, and Gatos, H. C., J. Appl. Phys. 48, 3566, (1977).Google Scholar
16. Katoa, Hiroyuki, Sanoa, Michihiro, Miyamotoa, Kazuhiro and Yaob, Takafumi, Journal of Crystal Growth. 237239, 538 (2002).Google Scholar
17. Ko, H. J., Chen, Y. F., Hong, S. K., Wenisch, H., Yao, T. and Look, D. C., Appl. Phys. Lett. 77, 3761 (2000).Google Scholar
18. Hirata, G.A., Siqueiros, J.M., Diaz, J.A., Contreras, O., McKittrick, J., Cheeks, T. and Lopez, O.A., Thin Solid Films. 288, 29 (1996).10.1016/S0040-6090(96)08862-1Google Scholar
19. Cheong, K.Y., Muti, N. and Ramanan, S. R., Thin Solid Films. 410, 142 (2002).Google Scholar
20. Aghamalyan, N. R., Kafadaryan, E. A., Hovsepyan, R. K. and Petrosyan, S. I., Semicond. Sci. Technol. 20, 80 (2005).Google Scholar
21. Hu, J. and Gordon, R.G., Sol. Cells. 30, 437 (1991).Google Scholar
22. Choi, B.H., Im, H.B., Song, J.S. and Yoon, K.H., Thin Solid Films. 193, 712 (1990).Google Scholar
23. Yoshida, S., Tsukazaki, A., Ohtomo, A., and Kawasaki, M., Appl. Phys. Lett. 85, 759 (2004).Google Scholar
24. Jeong, S. H., Kim, I. S., Kim, S. S., Kim, J. K. and Lee, B. T., J. Crystal Growth. 264, 110 (2004).10.1016/j.jcrysgro.2004.01.007Google Scholar
25. Borseth, T. M., Svensson, B. G., Kuznetsov, A. Yu., Klason, P., Zhao, Q. X. and Willander, M., Appl. Phys. Lett. 89, 262112 (2006).Google Scholar
26. Jeong, S.-;H., Kim, B.-S., and Lee, B.-T., Appl. Phys. Lett. 82, 2625 (2003).Google Scholar
27. Lin, B., Fu, Z., and Jia, Y., Appl. Phys. Lett. 79, 943 (2001).Google Scholar
28. Shan, F. K., Liu, G. X., Lee, W. J., Lee, G. H., Kim, I. S., and Shin, B. C., Appl. Phys. Lett. 86,221910 (2005).10.1063/1.1939078Google Scholar
29. Janotti, A. and Van de Walle, C. G., J. Cryst. Growth. 287, 58 (2006).10.1016/j.jcrysgro.2005.10.043Google Scholar
30. Morrison, S. R., Surface Physics of Phosporus and Semiconductors (Acedemic, New York,1975), pp 221 Google Scholar
31. Gopel, W., Prog. Surf. Sci. 20, 9103 (1985).Google Scholar
32. Hirata, G.A., McKittrick, J., Cheeks, T., Siqueiros, J.M., Diaz, J.A., Contreras, O.,Lopez, O.A., Thin Solid Films. 288, 29 (1996).Google Scholar
33. Kim, II-D., Choi, Y. W. and Tuller, H. L., Appl. Phys. Lett. 87, 043509 (2005).Google Scholar