Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-28T04:11:39.018Z Has data issue: false hasContentIssue false

Extrinsic Contributions to Piezoresponse Force Microscopy

Published online by Cambridge University Press:  26 February 2011

Frank Peter
Affiliation:
[email protected], Research Centre Juelich, Leo-Brand-Str., Juelich, NRW, 52425, Germany
Bernd Reichenberg
Affiliation:
Andreas Rüdiger
Affiliation:
Rainer Waser
Affiliation:
Krzysztof Szot
Affiliation:
Get access

Abstract

Piezoresponse force microscopy (PFM) is the method of choice to investigate piezoactivity on a nanometer scale. A careful distinction between intrinsic and extrinsic effects are mandatory, especially when measuring ferroelectric nanostructures. We focus on two omnipresent extrinsic contributions with a substantial impact: firstly adsorbates on the surface of perovsike materials and secondly the dependence of the lateral piezoresponse on the topography. A thorough understanding of these extrinsic contributions is essential in order to avoid ambiguities in the analysis of PFM measurements.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Rüdiger, A., Schneller, T., Roelofs, A., Tiedke, S., Schmitz, T. and Waser, R., Appl. Phys. A. 80, 1247 (2005)Google Scholar
2 Gruverman, A., Kholkin, A., Kingon, A., and Tokumoto, H., Appl. Phys. Lett. 78, 2751 (2001)Google Scholar
3 Rodriguez, B., Gruverman, A., Kingon, A., Nemanich, R. J., and Cross, J., J. Appl. Phys 95, 1958 (2004)Google Scholar
4 Kalinin, S. and Gruverman, A., eds., Scanning Probe Microscopy: Electrical and Electromechanical Phenomena on the Nanoscale (Springer Verlag, 2005)Google Scholar
5 Brune, D., Helmborg, R., Whitlow, H., and Hunderi, O., Surface Characterization (Wiley-VCH, 1997)Google Scholar
6 Moulder, J. F., Stickle, W. F., Sobol, P., and Bomben, K., Handbook of X-ray Photoelectron Spectroscopy (Perkin-Elmer Corporation, 1992)Google Scholar
7 Peter, F., Szot, K., Waser, R., Reichenberg, B., Tiedke, S., and Szade, J., Appl. Phys. Lett. 85, 2896 (2004)Google Scholar
8 Otto, T., Grafström, S., and Eng, L. M., Ferroelectrics 303, 149 (2004)Google Scholar
9 Harnagea, C., Pignolet, A., Alexe, M., and Hesse, D., Integrated Ferroelectrics 44, 113 (2002)Google Scholar
10 Peter, F., Rüdiger, A., Dittmann, R., Waser, R., Szot, K., Reichenberg, B., and Prume, K., Appl. Phys. Lett. 87, 082901 (2005)Google Scholar