Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-24T16:54:01.800Z Has data issue: false hasContentIssue false

Extracting Mobility-Lifetime Product in Solar Cell Absorbers Using Quantum Efficiency Analysis

Published online by Cambridge University Press:  18 May 2015

Jeremy R. Poindexter
Affiliation:
Massachusetts Institute of Technology, Cambridge, MA 02139, USA
Riley E. Brandt
Affiliation:
Massachusetts Institute of Technology, Cambridge, MA 02139, USA
Niall M. Mangan
Affiliation:
Massachusetts Institute of Technology, Cambridge, MA 02139, USA
Tonio Buonassisi
Affiliation:
Massachusetts Institute of Technology, Cambridge, MA 02139, USA
Get access

Abstract

The long-wavelength quantum efficiency (QE) response of photovoltaic absorbers is determined by the length scales for minority carrier collection. However, extracting quantitative measurements of minority carrier mobility-lifetime product (μτ) is complicated by uncertainty in other factors such as the depletion width, electric field, and the absorption coefficient. We apply previously developed methods to obtain estimates for μτ in a tin(II) sulfide (SnS) solar cell. We compare three analytic models for the minority carrier collection probability as a function of absorber depth to determine which model most accurately captures the behavior in our devices. For models in which multiple parameters are unconstrained, a random numerical search is used to optimize the fit to experimental QE for SnS. To identify sources of error, we perform a sensitivity analysis by fitting with SCAPS-1D. Our analysis shows that changes in absorption most strongly affect estimates for μτ, highlighting the need to obtain accurate, device-specific absorption data. Further modeling and experimental constraints are required to obtain self-consistent values for μτ that correspond to actual device performance.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Arora, N. D., Chamberlain, S. G., and Roulston, D. J., Appl. Phys. Lett. 37, 325 (1980).CrossRefGoogle Scholar
Hirsch, M., Brendel, R., Werner, J. H., and Rau, U., in Proceedings of 1994 IEEE 1st World Conference on Photovoltaic Energy Conversion - WCPEC (A Joint Conference of PVSC, PVSEC and PSEC) (IEEE, 1994), vol. 2, pp. 14541457.CrossRefGoogle Scholar
Dugas, J., and Oualid, J., Sol. Cells. 20, 167176 (1987).CrossRefGoogle Scholar
Albers, W., Haas, C., Vink, H. J., and Wasscher, J. D., J. Appl. Phys. 32, 2220 (1961).CrossRefGoogle Scholar
Ramakrishna Reddy, K. T., Koteswara Reddy, N., and Miles, R. W., Sol. Energy Mater. Sol. Cells. 90, 30413046 (2006).CrossRefGoogle Scholar
Steinmann, V., Jaramillo, R., Hartman, K., Chakraborty, R., Brandt, R. E., et al. , Adv. Mater. 26, 7488–92 (2014).CrossRefGoogle Scholar
Sinsermsuksakul, P., Sun, L., Lee, S. W., Park, H. H., Kim, S. B., et al. , Adv. Energy Mater. 4, 1400496 (2014).CrossRefGoogle Scholar
Mangan, N. M., Brandt, R. E., Steinmann, V., Jaramillo, R., Li, J. V., et al. , in 2014 IEEE 40th Photovoltaic Specialist Conference (PVSC) (IEEE, 2014), pp. 23732378.CrossRefGoogle Scholar
Scheer, R., and Schock, H.-W., Chalcogenide Photovoltaics: Physics, Technologies, and Thin Film Devices (WILEY-VCH Verlag & Co. KGaA, Weinheim, Germany, 2011).CrossRefGoogle Scholar
Donolato, C., Appl. Phys. Lett. 46, 270 (1985).CrossRefGoogle Scholar
Rau, U., and Brendel, R., J. Appl. Phys. 84, 6412 (1998).CrossRefGoogle Scholar
Ramakrishna Reddy, K. T., Nwofe, P. A., and Miles, R. W., Electron. Mater. Lett. 9, 363366 (2013).CrossRefGoogle Scholar
Gärtner, W. W., Phys. Rev. 116, 8487 (1959).CrossRefGoogle Scholar
Galluzzi, F., J. Phys. D. Appl. Phys. 18, 685690 (1985).CrossRefGoogle Scholar
Musselman, K. P., Ievskaya, Y., and MacManus-Driscoll, J. L., Appl. Phys. Lett. 101, 253503 (2012).CrossRefGoogle Scholar
Burgelman, M., Nollet, P., and Degrave, S., Thin Solid Films. 361, 527532 (2000).CrossRefGoogle Scholar
Eron, M., and Rothwarf, A., Appl. Phys. Lett. 44, 131 (1984).CrossRefGoogle Scholar
Paire, M., Lombez, L., Donsanti, F., Jubault, M., Collin, S., et al. , 8620, 86200Z (2013).Google Scholar
Eron, M., J. Appl. Phys. 60, 2133 (1986).CrossRefGoogle Scholar
Gokmen, T., Gunawan, O., and Mitzi, D. B., J. Appl. Phys. 114, 114511 (2013).CrossRefGoogle Scholar
Grenet, L., Fillon, R., Altamura, G., Fournier, H., Emieux, F., et al. , Sol. Energy Mater. Sol. Cells. 126, 135142 (2014).CrossRefGoogle Scholar