Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-02T23:33:17.044Z Has data issue: false hasContentIssue false

Experimental Study of Silane Plasma Nanoparticle Formation in Amorphous Silicon Thin Films

Published online by Cambridge University Press:  01 February 2011

S. Thompson
Affiliation:
Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN 55455
C. R. Perrey
Affiliation:
Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455
T. J. Belich
Affiliation:
School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455
C. Blackwell
Affiliation:
School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455
C. B. Carter
Affiliation:
Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455
J. Kakalios
Affiliation:
School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455
U. Kortshagen
Affiliation:
Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN 55455
Get access

Abstract

RF glow discharge deposited hydrogenated amorphous silicon films containing silicon nanocrystalline inclusions (a/nc-Si:H) films are investigated as a function of a thermal gradient applied across the silane plasma during film growth. The a/nc-Si:H films are synthesized from hydrogen-diluted silane plasmas when a capacitively-coupled plasma enhanced chemical vapor deposition reactor is operated at high gas chamber pressures. Plasma diagnostics and transmission electron microscopy image analysis of films deposited with and without a thermal gradient suggest that nanoparticle formation occurs within the plasma, rather than resulting from solid-state nucleation at the growing film surface.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Lubianiker, Y., Cohen, J. D., Jin, H.-C., Abelson, J.R., Physical Review B 60, 4434 (1999); D. Kwon, C.-C. Chen, J. D. Cohen, H.-C. Jin, E. Hollar, I. Robertson, J. R. Abelson, Physical Review B 60, 4442 (1999).10.1103/PhysRevB.60.4434Google Scholar
2 Wronski, C. R., Pearce, J. M., Koval, R. J., Niu, X., Ferlauto, A. S., Koh, J., and Collins, R. W., Materials Research Society Symposium - Proceedings 715, A13.4.1 (2002).10.1557/PROC-715-A13.4Google Scholar
3 Meaudre, M., Meaudre, R., Butte, R., Vignoli, S., Longeaud, C., Kleider, J. P., and Cabarrocas, P. Roca i, Journal of Applied Physics 86, 946 (1999).10.1063/1.370829Google Scholar
4 Staebler, D. L. and Wronski, C. R., Applied Physics Letters, 31, 292 (1977).10.1063/1.89674Google Scholar
5 Butte, R., Meaudre, R., Meaudre, M., Vignoli, S., Longeaud, C., Kleider, J. P., and Cabarrocas, P. Roca i, Philos.Mag. B 79, 1079 (1999).10.1080/13642819908214860Google Scholar
6 Pan, B. C. and Biswas, R., J. Appl. Phys. 96, 6247 (2004).10.1063/1.1807524Google Scholar
7 Morral, A. Fontcuberta i, and Cabarrocas, P. Roca i, Thin Solid Films, 383, 161 (2001).10.1016/S0040-6090(00)01596-0Google Scholar
8 This HRTEM image was taken on a Philips CM200 at the Forschungszenstrum Julich, Germany, with spherical aberration correction of the objective lens. See Urban, K. and Lentzen, M., Microscopy and Microanalysis 8, 8 (2002); C. Perrey, S. Thompson, M. Lentzen, U. Kortshagen, and C. B. Carter, J. Non-Cryst. Solids 343, 78 (2004).Google Scholar
9 Jellum, G. M., Daugherty, J. E., and Graves, D. B., J. Appl. Phys. 69, 6923 (1991).10.1063/1.347630Google Scholar
10 Thompson, S., Perrey, C. R., Carter, C. B., Belich, T. J., Kakalios, J., and Kortshagen, Uwe, J. Appl. Phys. 97, 34, 310 (2005).Google Scholar
11 Quicker, D. and Kakalios, J., Phys. Rev. B 60, 2449 (1999).10.1103/PhysRevB.60.2449Google Scholar
12 Williams, D. B. and Carter, C. B., Transmission Electron Microscopy (Plenum, New York, 1996).10.1007/978-1-4757-2519-3Google Scholar
13 Bohm, C. and Perrin, J., J. Phys. D 24, 865 (1991); L. Boufendi, A. Plain, L. Boufendi, J. P. Blondeau, and C. Laure, J. Appl. Phys. 70, 1991 (1991).Google Scholar
14 Perrin, J., Leroy, O., and Bordage, M.C., Contrib. Plasma Phys. 36, 3 (1996).10.1002/ctpp.2150360102Google Scholar
15 Cabarrocas, P. Roca i, Morral, A. Fontcuberta i, and Poissant, Y., Thin Solid Films 403-404, 39 (2002).10.1016/S0040-6090(01)01656-XGoogle Scholar
16 Lucovsky, G., Nemanich, R. J., and Knights, J. C., Physical Review B, 19, 2064 (1979).10.1103/PhysRevB.19.2064Google Scholar
17 Bhattacharya, E. and Mahan, A. H., Appl. Phys. Lett. 52, 1587 (1988).10.1063/1.99089Google Scholar