Hostname: page-component-7bb8b95d7b-fmk2r Total loading time: 0 Render date: 2024-09-06T10:24:17.075Z Has data issue: false hasContentIssue false

Experimental study of filling carbon nanotubes with nucleic acids

Published online by Cambridge University Press:  15 March 2011

Daxiang Cui
Affiliation:
Max Planck Institute for Metals Research, Heisenbergstrasse 3, 70569 Stuttgart, Germany
Cengiz S. Ozkan
Affiliation:
Department of Mechanical Engineering, University of California, Riverside, CA 92521-0425, USA
Yong Kong
Affiliation:
Max Planck Institute for Metals Research, Heisenbergstrasse 3, 70569 Stuttgart, Germany
Huajian Gao
Affiliation:
Max Planck Institute for Metals Research, Heisenbergstrasse 3, 70569 Stuttgart, Germany
Get access

Abstract

Encapsulation of DNA molecules inside carbon nanotubes (CNT) in water were performed under the conditions of 400K and 3Bar. Double stranded DNAs of 2kb and 400bp in length, and single stranded oligonucleotides of 60bp in length were selected as target molecules. Au and Pt nanoparticles and fluorescent dye Cy3 were used as tags. Agarose gel electrophoresis was used to remove DNA molecules attached on the outside walls of CNTs. Laser confocal microscopy, scanning electron microscopy (SEM), high resolution transmission electron microscopy (HR-TEM), energy dispersive x-ray spectroscopy (EDX) were employed to confirm the encapsulation process. The results demonstrated that DNA molecules attached to the outside of CNTs can be removed by electrophoresis. Confocal microscopy and HR-TEM observations as well as EDX analysis confirmed that the Cy3-labelled DNA molecules, Au-labelled oligonucleotides and Pt-labelled DNA fragments can indeed be encapsulated inside CNTs. These experimental results support our earlier molecular dynamics simulations on encapsulating oligonucleotides inside CNTs. The DNA-CNT hybrids could be further explored for potential applications in bio-nanotechnology.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Cui, D., and Gao, H., Biotechnol. Prog. 19, 683 (2003).Google Scholar
2. Niemeyer, C. M., Angew.Chem.Int.Ed. 40, 4128 (2001).Google Scholar
3. Martin, C.R., Kohli, P.. Nature Reviews. 2, 29 (2002).Google Scholar
4. Smith, B. W., Monthioux, M., Luzzi, D. E., Nature 396, 323 (1998).Google Scholar
5. Hirahara, K., Suenaga, K., Bandow, S., Kato, H., Okazaki, T., Shinohara, H., and Iijima, S., Phys. Rev. Lett. 85, 5384 (2000).Google Scholar
6. Hummer, G., Rasalah, J. C., Noworyta, J. P., Nature 414, 188 (2001).Google Scholar
7. Gogotsi, Y., Libera, J. A., Guvenc-Yazicioglu, A., and Megaridis, C. M., Appl. Phys. Lett. 79, 1021 (2001).Google Scholar
8. Tsang, S. C., Davis, J. J., Green, M. L. H., Hill, H. A. O., Leung, Y. C. and Sadler, P. J., J. Chem. Soc. Chem. Comm. 1803 (1995).Google Scholar
9. Saito, R., Dresselhaus, G., and Dressehaus, M. S., Physical Properties of Carbon Nanotubes, Imperial College Press, London 1998.Google Scholar
10. Reed, M. A., Molecular Electronics, Academic Press, London 2000.Google Scholar
11. Bonard, J.M., Weiss, N., Kind, H., ckli, T. Stö, Forro, L., Kern, K., and Chatelain, A., Adv. Mater. 13, 184 (2001).Google Scholar
12. Kumar, A., Pattarkine, M., Bhadbhade, M., Mandale, A B, Ganesh, K. N., Datar, S. S., Dharmadhikari, C. V., and Sastry, M., Adv. Mater. 13, 341–3 (2001).Google Scholar
13. Sastry, M., Kumar, A., Datar, S., Dharmadhikari, C. V., and Ganesh, K. N., Appl. Phys. Lett. 78, 2943 (2001).Google Scholar
14. Petach, H. H., Henderson, W., and Olsen, G. M., J. Chem. Soc. Chem. Commun. 2181 (1994).Google Scholar
15. Mertig, M., Ciacchi, L. C., Seidel, R., Pompe, W., and Vita, A. De, Nano. Lett. 2, 841 (2002).Google Scholar
16. Sambrook, J., Fritsch, E. F., and Maniatis, T., Molecular Cloning: A laboratory manual 2 nd ed Cold Spring Harbor Laboratory Press, USA.Google Scholar
17. Jones, D., New Scientist 3, 145 (1966).Google Scholar
18. Heath, J.R., O'Brien, S.C., Zhang, Q., Liu, Y., Curl, R.F., Kroto, H.W., Tittel, F.K., Smalley, R.E., J. Amer. Chem. Soc. 109, 359 (1985).Google Scholar
19. Majetich, S.A., Artman, J.O., McHenry, M.E., Nuhfer, N.T., Staley, S.W., Phys. Rev. B 48, 845 (1993).Google Scholar
20. Seraphin, S., Zhou, D., Jiao, J., J. Appl. Phys. 80, 1 (1996).Google Scholar
21. Saito, Y., in : Ebbesen, T.W. (Ed.), Carbon nanotubes: Preparation and Properties, CRC press, 1996.Google Scholar
22. Saito, Y., Carbon 33, 979 (1995).Google Scholar
23. Dravid, V.P., Host, J.J., Teng, M.H., Elliott, B.R., Hwang, J.H., Johnson, D.L., Mason, T.O. and Weertman, J.R., Nature 374, 602 (1995).Google Scholar
24. Ugarte, D., Chem. Phys. Lett. 209, 99 (1993).Google Scholar
25. Tsang, S.C., Harris, P.J.F., Green, M.L.H., Nature 362, 520 (1994).Google Scholar
26. Gao, H., Kong, Y., Cui, D., Ozkan, C. S., Nano. Lett. 3, 471 (2003).Google Scholar
27. Cui, D., Tian, F., Kong, Y., Igor, T., and Gao, H., Nanotechnology 15, 154 (2004)Google Scholar
28. Guo, Z., Sadler, P. J., Tsang, S. C., Adv. Mater. 10, 701 (1998).Google Scholar
29. Seeman, N.C., Trends Biotech. 17, 437 (1999).Google Scholar
30. Hua, Q., He, R.Q., Biochim Biophys Acta. 205, 1645 (2003).Google Scholar
31. Dujardin, E., Ebbesen, T.W., Hiura, H., Tanigaki, K., Science 265, 1850(1994).Google Scholar
32. Ugarte, D., Châtelain, A., Heer, W.A. de, Science 274,1897(1997).Google Scholar