Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-27T15:55:21.977Z Has data issue: false hasContentIssue false

Experimental Study of a Reaction-Diffusion System in a Capillary: Complex Behavior of a Seemingly Simple System

Published online by Cambridge University Press:  15 February 2011

Anna Lin
Affiliation:
University of Michigan, Ann Arbor, MI. 48109.
Andrew Yen
Affiliation:
University of Michigan, Ann Arbor, MI. 48109.
Yong-Eun Koo
Affiliation:
University of Michigan, Ann Arbor, MI. 48109.
Raoul Kopelman
Affiliation:
University of Michigan, Ann Arbor, MI. 48109.
Get access

Abstract

We study a reaction-diffusion system within the confines of a thin capillary tube. Xylenol orange and Cr 3+ are introduced into a capillary tube from opposite ends and meet in the middle forming a reaction front. Unequal initial concentrations of the reactants causes the center of the reaction front to move in time. Characteristics of the front such as the width of the reaction zone, w, the position of the center of the front, xf, the global reaction rate, R, and the local reaction rate, r(xf,t) are determined by continuously monitoring the product concentration in space vs. time. We observe crossover of the global rate from classical to non-classical behavior and a splitting of the reaction front.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Henisch, H. K., Crystals in Gels and Liesegang Rings. (Cambridge University Press, Cambridge, 1988).Google Scholar
2. Murray, J. D., Mathematical Biology. Biomathematics (SpringerVerlag, 1993), vol.19.Google Scholar
3. Galfi, L., Racz, Z., Physical Review, A 38, 31513154 (1988).Google Scholar
4. Cornell, S., Droz, M., Chopard, B., Physical Review A, 44, 48264832 (1991).Google Scholar
5. Taitelbaum, H., Havlin, S., Kiefer, J., Trus, B., Weiss, G., Journal of Statistical Physics 65, 5/6, 873891 (1991).Google Scholar
6. Taitelbaum, H., Koo, Y.-E. L., Havlin, S., Kopelman, R., Weiss, G. H., Physical Review A, 46, 21512154 (1992).Google Scholar
7. Araujo, M., Shlomo, H., Weiss, G. H., Stanley, H. E., Physical Review A, 43, 52075213 (1991).Google Scholar
8. Havlin, S., Araujo, M., Larralde, H., Shehter, A., Stanley, H. E., Fractals, 1, 405415 (1993).Google Scholar
9. Jiang, Z., Ebner, C., Physical Review A 42, 7483 (1990).Google Scholar
10. Koo, Y.-E. L., Kopelman, R., Journal of Statistical Physics, 65, 893918 (1991).Google Scholar
11. Koo, Y.-E., Kopelman, R., Israel Journal of Chemistry, 31, 147157 (1991).Google Scholar
12. Rehak, B. and Korbl, J., Collection Czechoslov. Chem. Commun., 25, 797 (1960).Google Scholar
13. Vilensky, B., Taitelbaum, H., to be published.Google Scholar
14. Taitelbaum, H., et al., to be published.Google Scholar
15. Koo, Y.-E., Kopelman, R., Yen, A. and Lin, A., MRS Symp. Proc., 290, 273 (1993).Google Scholar
16. Taitelbaum, H., et al., this symposium, to be published.Google Scholar