Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-30T23:29:57.322Z Has data issue: false hasContentIssue false

Experimental Evidence of the Hyperfine Interaction between Hole and Nuclear Spins in InAs/GaAs Quantum Dots

Published online by Cambridge University Press:  31 January 2011

Benoit Eble
Affiliation:
[email protected], INSP, Paris, France
Christophe Testelin
Affiliation:
[email protected], INSP, Paris, France
Pascal Desfonds
Affiliation:
[email protected], INSP, Paris, France
Frederic Bernardot
Affiliation:
[email protected], INSP, Paris, France
Andrea Balocchi
Affiliation:
[email protected], LPCNO, Toulouse, France
Thierry Amand
Affiliation:
[email protected], LPCNO, Toulouse, France
Anne Miard
Affiliation:
[email protected], LPN, Marcoussis, France
Aristide Lemaître
Affiliation:
[email protected], LPN, Marcoussis, France
Xavier Marie
Affiliation:
[email protected], LPCNO, Toulouse, France
Maria Chamarro
Affiliation:
[email protected], INSP, Paris, France
Get access

Abstract

The spin dynamics of resident holes in singly p-doped InAs/GaAs quantum dots is studied by pump-probe photo-induced circular dichroism experiments. We show that the hole spin dephasing is controlled by the hyperfine interaction between the hole spin and nuclear spins. We find a characteristic hole spin dephasing time of 12 ns, in close agreement with our calculations based on a dipole-dipole coupling between the hole and the quantum dot nuclei. Finally we demonstrate that a small external magnetic field, typically 10 mT, quenches the hyperfine hole spin dephasing.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Loss, D., and DiVincenzo, D., Phys. Rev. A 57, 120126 (1998).Google Scholar
2 Awschalom, D. D., Loss, D., and Samarth, N. (eds), Semiconductor Spintronics and Quantum Computation (Springer, Berlin, 2002).Google Scholar
3 Hanson, R., et al., Rev. Mod Phys. 79, 1217- (2007).Google Scholar
4 Merkulov, I.A., Efros, Al L. and Rosen, M., Phys. Rev. B 65, 205309, (2002).Google Scholar
5 Khaetskii, A.V., Loss, D. and Glazman, L., Phys. Rev. Lett 88 186802 (2002).Google Scholar
6 Braun, P.-F. et al., Phys. Rev. Lett. 94, 116601 (2005).Google Scholar
7 Johnson, A.C. et al., Nature 435, 925, (2005)Google Scholar
8 Gryncharova, E.I. and Perel, V.I. Sov. Phys. Semicond. 11, 997 (1977).Google Scholar
9 Damen, T. et al., Phys. Rev. Lett. 67, 3432 (1991).Google Scholar
10 Amand, T. et al. Phys. Rev. B, 50, 11624 (1994).Google Scholar
11 Baylac, B. et al., Solid. State Comm. 93, 57 (1995).Google Scholar
12 Flissikowski, T. et al, Phys. Rev. B 68, 161309 (2003).Google Scholar
13 Laurent, S. et al., Phys. Rev. Lett. 94, 147401 (2005).Google Scholar
14 Gerardot, B.D. et al., Nature 451, 441 (2008).Google Scholar
15 Testelin, C. et al. arXiv:0903.3874. Eble et al. to be published PRL 102, 146601, (2009)Google Scholar
16 Bester, G., Nair, S. and Zunger, A., Phys. Rev. B 67, 161306 (2003).Google Scholar
17 Abragam, A., The Principles of Nuclear Magnetism (Clarendon, Oxford, 1973), p. 172.Google Scholar
18 Greilich, A. et al., Phys. Rev. Lett. 96, 227401 (2006)Google Scholar
19 Chamarro, M., Bernardot, F. and Testelin, C., J. Phys. Condens. Matter 19, 445007 (2007)Google Scholar
20 Maletinsky, P. et al., Phys. Rev. Lett. 99, 056804 (2007)Google Scholar
21 Krizhanovskii, D.N. et al, Phys. Rev. B 72, 161312 (2005)Google Scholar
22 Koudinov, A.V. et al, Phys. Rev. B 70, 241305 (2004)Google Scholar
23 Léger, Y., Besombes, L., Maingault, L. and Mariette, H., Phys. Rev. B 76, 045331 (2007).Google Scholar