Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-12T08:11:42.403Z Has data issue: false hasContentIssue false

Experimental and Theoretical Analysis of Heat and Mass Transport in the System for AlN Bulk Crystal Growth

Published online by Cambridge University Press:  11 February 2011

M. V. Bogdanov
Affiliation:
Semiconductor Technology Research, Inc., P.O. Box 70604, Richmond, VA 23255–0604, USA
S. Yu. Karpov
Affiliation:
Semiconductor Technology Research, Inc., P.O. Box 70604, Richmond, VA 23255–0604, USA
A. V. Kulik
Affiliation:
Semiconductor Technology Research, Inc., P.O. Box 70604, Richmond, VA 23255–0604, USA
M. S. Ramm
Affiliation:
Semiconductor Technology Research, Inc., P.O. Box 70604, Richmond, VA 23255–0604, USA
Yu. N. Makarov
Affiliation:
Semiconductor Technology Research, Inc., P.O. Box 70604, Richmond, VA 23255–0604, USA
R. Schlesser
Affiliation:
Dept. Mat. Sci. Eng., North Caroline State University, 1001 Capability Dr., Raleigh, NC 27695 -7919, USA
R. F. Dalmau
Affiliation:
Dept. Mat. Sci. Eng., North Caroline State University, 1001 Capability Dr., Raleigh, NC 27695 -7919, USA
Z. Sitar
Affiliation:
Dept. Mat. Sci. Eng., North Caroline State University, 1001 Capability Dr., Raleigh, NC 27695 -7919, USA
Get access

Abstract

Bulk AlN crystal growth by Physical Vapor Transport (PVT) is studied both experimentally and numerically. This paper presents the analysis of heat and mass transport mechanisms in closed and partially open crucible geometries. The heat transfer in the growth system used at North Carolina State University (NCSU) is simulated. The computed temperature profiles are used in the analysis of mass transport in the growth cell to gain understanding of the effect of species exchange between the crucible and environment on the AlN growth rate. The model predictions are in reasonable agreement with observations.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Slack, G. A., McNelly, T. F., J. Crystal Growth 34, 263 (1976).Google Scholar
2. Slack, G. A., McNelly, T. F., J. Crystal Growth 42, 560 (1977).Google Scholar
3. Schlesser, R. and Sitar, Z., J. Cryst. Growth 234, 349 (2002).Google Scholar
4. Schlesser, R., Dalmau, R., and Sitar, Z., J. Cryst. Growth 241, 416 (2002).Google Scholar
5. Bogdanov, M.V., Galyukov, A.O., Karpov, S.Yu., Kochuguev, S.K., Ofengeim, D. Kh., Tsiryulnikov, A.V., Ramm, M.S., Zhmakin, A.I., and Makarov, Yu.N., J. Cryst. Growth 225, 307 (2001).Google Scholar
6. Kitanin, E.L., Ris, V.V., Schmidt, A.A., Karpov, S.Yu., and Ramm, M.S., Submitted to Mat. Sci. Eng. B (2002).Google Scholar
7. Kitanin, E.L., Ris, V.V., Ramm, M.S., and Schmidt, A.A., Mat. Sci. Eng. B 55, 174 (1998).Google Scholar
8. Karpov, D.S., Bord, O.V., Karpov, S. Yu., Zhmakin, A.I., Ramm, M.S., and Makarov, Yu.N., Mat. Sci. Forum. 353–356, 37 (2001).Google Scholar
9. Segal, A.S., Karpov, S.Yu., Makarov, Yu.N., Mokhov, E.N., Roenkov, A.D., Ramm, M.G., and Vodakov, Yu.A., J. Cryst. Growth 211, 68 (2000).Google Scholar
10. Karpov, S.Yu., Kulik, A.V., Segal, A.S., Ramm, M.S., and Makarov, Yu.N., Phys. Stat. Sol. (a) 188, 763 (2001).Google Scholar