Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-28T11:56:04.077Z Has data issue: false hasContentIssue false

Experimental and Atomistic Modelling Study of Ion Irradiation Damage in Thin Crystals of the TiO2 Polymorphs

Published online by Cambridge University Press:  01 February 2011

Gregory R Lumpkin
Affiliation:
[email protected], ANSTO, Institute of Materials Engineering, Sydney, New South Wales, Australia
Katherine L Smith
Affiliation:
[email protected], ANSTO, Institute of Materials Engineering, Sydney, New South Wales, Australia
Mark G Blackford
Affiliation:
[email protected], ANSTO, Institute of Materials Engineering, Sydney, New South Wales, Australia
Bronwyn S Thomas
Affiliation:
[email protected], ANSTO, Institute of Materials Engineering, Sydney, New South Wales, Australia
Karl Rhys Whittle
Affiliation:
[email protected], United States
Darren J Attard
Affiliation:
[email protected], ANSTO, Institute of Materials Engineering, Sydney, New South Wales, Australia
Nestor J Zaluzec
Affiliation:
[email protected], Argonne National Laboratory, Electron Microscopy Center, Chicago, Illinois, United States
Nigel A Marks
Affiliation:
[email protected], Curtin University of Technology, Chemistry, Perth, Western Australia, Australia
Get access

Abstract

Thin crystals of rutile, brookite, and anatase were irradiated in-situ with 1.0 MeV Kr using the IVEM-TANDEM facility. Synthetic rutile and cassisterite (SnO2, rutile structure) remained crystalline up to 5 × 1015 ion cm-2 at 50 K. Natural brookite and anatase with low impurity levels became amorphous at 8.1 ± 1.8 × 1014 and 2.3 ± 0.2 × 1014 ions cm-2, respectively, at 50 K. Irradiation at higher temperature revealed Tc = 170 K for brookite and 242 K for anatase. Natural rutile with about 2 wt% impurities became amorphous at 9.4 ± 1.8 × 1014 ions cm-2 at 50 K and has a Tc = 207 K. The available data reveal both a structural effect in the polymorphs with low levels of chemical impurities and a chemical effect in natural rutile specimens containing up to about 1.7 wt% impurities.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Langlet, M., Burgos, M., Coutier, C., Jimenez, C., Morant, C., and Manso, M., J. Sol-Gel Sci. Tech. 22, 139 (2001).Google Scholar
2. Stefanovsky, S. V., Yudintsev, S. V., Gieré, R., and Lumpkin, G. R., “Nuclear Waste Forms” Energy, Waste, and the Environment: a Geochemical Perspective, edited by Gieré, R. and Stille, P., Geological Society, London, Special Publications, Vol. 236, p36 (2004).Google Scholar
3. Lumpkin, G. R., Smith, K. L., Blackford, M. G., Thomas, B. S., Whittle, K. R., Marks, N. A., and Zaluzec, N.J., Phys. Rev. B 77, 214201 (2008).Google Scholar
4. Marks, N. A., Thomas, B. S., Smith, K. L., and Lumpkin, G. R., Nucl. Instr. Meth. Phys. Res. B 266, 2665 (2008).Google Scholar
5. Gloter, A., Douiri, A., Tencé, M. and Colliex, C., Ultramicroscopy 96 385 (2003)Google Scholar
6. Hoang, V. V., Phys. Stat. Sol. 244, 1280 (2007).Google Scholar
7. Thomas, B. S., Marks, N. A., Corrales, L. R., and Devanathan, R., Nucl. Instr. Meth. Phys. Res. B 239, 191 (2005).Google Scholar