Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-12T09:36:24.223Z Has data issue: false hasContentIssue false

Excitons Bound to Stacking Faults in Wurtzite GaN

Published online by Cambridge University Press:  10 February 2011

Y. T. Rebane
Affiliation:
A.F. Ioffe Physico-Technical Institute, Russian Academy of Sciences, 26 Politechnicheskaya, St. Petersburg 94021, Russia
Y. G. Shreter
Affiliation:
A.F. Ioffe Physico-Technical Institute, Russian Academy of Sciences, 26 Politechnicheskaya, St. Petersburg 94021, Russia
M. Albrecht
Affiliation:
A.F. Ioffe Physico-Technical Institute, Russian Academy of Sciences, 26 Politechnicheskaya, St. Petersburg 94021, Russia
Get access

Abstract

A model of the exciton bound to stacking faults (SF) in GaN is suggested. It is shown that SFs are potential wells (depth ∼ 120 meV) for electrons and potential barriers (∼ 60 meV) for holes. The binding energy of the exciton at stacking faults is estimated as 30 − 60 meV. The 364 nm line in GaN photoluminescence is attributed to excitons at stacking faults.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Wetzel, C., Fisher, S., Krüger, J., Haller, E., Molnar, R.J., Moustakas, T.D., Mokhov, E.N., and Baranov, P.G., Appl. Phys. Lett. 68, 2556 (1996).Google Scholar
2. Shreter, Y.G. and Rebane, Y.T., Proceedings of the 23d International Conference on the Physics of Semiconductors Berlin. V.1.D.22, p. 2937 (1996).Google Scholar
3. Rebane, Y.T. and Shreter, Y.G., Proceedings of 23d International Symposium on Compound Semiconductors, Astoria Hotel, St. Petersburg, Russia, September 23–27, 1996 (in press).Google Scholar
4. Shreter, Y.G., Rebane, Y.T., Davis, T.J., Barnard, J., Darbyshire, M., Steeds, J.W., Perry, W.G., Bremser, M. and Davis, R.F., Mat. Res. Soc. Symp. Proc. 449, 683 (1997).Google Scholar
5. Rieger, W., Dimitrov, R., Brunner, D., Rohrer, E., Ambacher, O. and Stutzmann, M., Phys. Rev. B, to be published.Google Scholar
6. Albrecht, M., Christiansen, S., Salviati, G., Zanotti-Fregonara, C., Rebane, Y.T., Shreter, Y.G., Mayer, M., Pelzmann, A., Kamp, M., Ebeling, K.J., Bremser, M.D., Davis, R.F., Strunk, H.P. (paper at this Conference).Google Scholar
7. Vermaut, P., Ruterana, P., and Nouet, G., Phil. Mag. a 75, 239 (1997).Google Scholar
8. Maruska, H.P. and Tietjen, J.J., Appl. Phys. Lett. 15 327 (1969).Google Scholar
9. Perlin, P., Gorczyca, I., Christensen, N.E., Grzegory, I., Teisseyre, H., and Suski, T., Phys. Rev. B 45 13307 (1992).Google Scholar
10. Suzuki, M. and Uenoyama, T., J. Appl. Phys. 80 6868 (1996).Google Scholar
11. Van de Walle, C.G., Phys. Rev. B 39 1871 (1989).Google Scholar
12. Strite, S. and Morkoç, H., J. Vac. Sci. Technol. B 10 1237 (1992).Google Scholar
13. Baker, A.S. and Ilegems, M., Phys. Rev. B 7 743 (1973).Google Scholar
14. Rebane, Y.T., Phys. Rev. B 48 11772 (1993).Google Scholar
15. Morkoc, H., Strite, S., Gao, G.B., Lin, M.E., Sverdlov, B., and Burns, M., J. Appl. Phys. 76, 1363 (1994).Google Scholar