Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-02T23:19:33.343Z Has data issue: false hasContentIssue false

Excited-Atom Production by Electron Bombardment of Alkali-Halides

Published online by Cambridge University Press:  28 February 2011

R. E. Walkup
Affiliation:
IBM Thomas J. Watson Research Center, P.O. Box 218, Yorktown Heights, N.Y. 10598
Ph. Avouris
Affiliation:
IBM Thomas J. Watson Research Center, P.O. Box 218, Yorktown Heights, N.Y. 10598
A. P. Ghosh
Affiliation:
IBM Thomas J. Watson Research Center, P.O. Box 218, Yorktown Heights, N.Y. 10598
Get access

Abstract

We present experimental results which suggest a new mechanism for the production of excited atoms and ions by electron bombardment of alkali-halides. Doppler shift measurements show that the electronically excited atoms have a thermal velocity distribution in equilibrium with the surface temperature. Measurements of the absolute yield of excited atoms, the distribution of population among the excited states, and the dependence of yield on incident electron current support a model in which excited atoms are produced by gas-phase collisions between desorbed ground-state atoms and secondary electrons. Similarly, gas-phase ionization of ground-state neutrals by secondary electrons accounts for a substantial portion of the positive ions produced by electron bombardment of alkali-halides.

Type
Articles
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. A good collection of recent work appears in Desorption Induced by Electronic Transitions, DIET 1, edited by Tolk, N. H., Traum, M. M., Tully, J. C., and Madey, T. E. (Springer-Verlag, Berlin, 1983), and Desorption Induced by Electronic Transitions, DIET 2, edited by W. Brenig and D. Menzel (Springer-Verlag, Berlin, 1984)CrossRefGoogle Scholar
2. Palmberg, P. W. and Rhodin, T. N., J. Phys. Chem. Solids 29, 1917 (1968)Google Scholar
3. Itoh, N., Nuclear Instruments and Methods 132, 201 (1976)Google Scholar
4. Overeijnder, H., Szymonski, M., Haring, A., and de Vries, A. E., Radiation Effects 36, 63 (1978), and H. Overeijnder, M. Szymonski, A. Haring, and A. E. de Vries, Radiation Effects 38,21 (1978)CrossRefGoogle Scholar
5. Szymonski, M., Overeijnder, H., and de Vries, A. E., Surface Science 90, 274 (1979)Google Scholar
6. Szymonski, M., Radition Effects 52, 9 (1980)Google Scholar
7. Tolk, N. H., Feldman, L. C., Kraus, J. S., Morris, R. J., Pian, T. R., Traum, M. M., and Tully, J. C., pg. 112 in Inelastic Particle-Surface Collisions, edited by Taglauer, E. and Heiland, W. (Springer-Verlag, Berlin, 1981)CrossRefGoogle Scholar
8. Tolk, N. H., Feldman, L. C., Kraus, J. S., Morris, R. J., Traum, M. M., and Tully, J. C., Phys. Rev. Lett. 46, 134 (1981)Google Scholar
9. Tolk, N. H., Traum, M. M., Kraus, J. S., Pian, T. R., Collins, W. E., Stoffel, N. G., and Margaritondo, G., Phys. Rev. Lett. 499, 812 (1982)Google Scholar
10. Pian, T. R., Tolk, N. H., Traum, M. M., Kraus, J., and Collins, W. E., Surface Science 129, 573 (1983)Google Scholar
11. Tolk, N. H., Haglund, R. F. Jr., Mendenhall, M. H., Taglauer, E., and Stoffel, N. G., pg. 152 in Desorption Induced by Electronic Transitions, DIET 2, edited by Brenig, W. and Menzel, D. (Springer-Verlag, Berlin, 1984).Google Scholar
12. Haglund, R. and Tolk, N., in Desorption Induced by Electronic Transitions, DIET 2, edited by Brenig, W. and Menzel, D. (Springer-Verlag, Berlin, 1984). pg. 277 Google Scholar
13. Szymonski, M, Ruthowski, J., Poradzisz, A., Postawa, Z., and Jorgensen, B., in Desorption Induced by Electronic Transitions, DIET 2, edited by Brenig, W. and Menzel, D. (Springer-Verlag, Berlin, 1984). pg. 160 Google Scholar
14. Friedenberg, A. and Shapira, Y., J. Phys. C 15, 4763 (1982)Google Scholar
15. Pian, T. R., Traum, M. M., Kraus, J. S., Tolk, N. H., Stoffel, N. G., and Margaritondo, G., Surf. Sci. 128, 13 (1983)Google Scholar
16. Parks, C. C., Hussain, Z., Shirley, D. A., Knotek, M. L., Loubriel, G., and Rosenberg, R. A., Phys. Rev. B 28, 4793 (1983)Google Scholar
17. Pooley, D., Proc. Phys. Soc. 877, 257 (1966)Google Scholar
18. Hersh, H. N., Phys. Rev. 148, 928 (1966)Google Scholar
19. Elliot, D. J. and Townsend, P. D., Phil. Mag. 23, 249 (1971)Google Scholar
20. Knotek, M. L. and Feibelman, P. J., Phys. Rev. Lett. 40, 964 (1978)Google Scholar
21. Walkup, R. E. and Ph. Avouris, Phys. Rev. Lett. 56, 524 (1986)Google Scholar
22. Stoffel, N. G., Riedel, R., Colavita, E., Margaritondo, G., Haglund, R. F. Jr., Taglauer, E., and Tolk, N. H., Phys. Rev. B. 32, 6805 (1985)CrossRefGoogle Scholar
23. pg E-363 of the CRC Handbook of Chemistry and Physics, 66th edition, edited by Weast, R. C., CRC Press, Boca Raton (1985)Google Scholar
24. Phelps, J. O. and Lin, C. C., Phys. Rev. A 24, 1299 (1981)Google Scholar
25. Kollath, R., pg. 232 in Handbuch der Physik Vol.21, edited by Fliigge, S., Springer-Verlag, Berlin 1956 Google Scholar
26. Henke, B. L., Liesegang, J., and Smith, S. D., Phys. Rev. B 19, 3004 (1979)Google Scholar
27. McFarland, R. H. and Kinney, J. D., Phys. Rev., 137, A 1058 (1965)Google Scholar