Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-27T15:28:25.581Z Has data issue: false hasContentIssue false

Excimer-Laser-Assisted Etching of Gallium Arsenide: The Effect of Substrate Temperature

Published online by Cambridge University Press:  26 February 2011

Michael R. Berman*
Affiliation:
McDonnell Douglas Research Laboratories, P. O. Box 516, St. Louis, MO 63166
Get access

Abstract

The excimer-laser-assisted etching of GaAs in Cl2 at 308 nm has been studied as a function of substrate temperature in the range of 23 to 150°C. Rectangular channels were etched into (100)-oriented, undoped GaAs wafers. The fluence from the xenon chloride excimer laser at the GaAs surface was 175 mJ/cm2. At temperatures below 75°C, the etch rate was independent of substrate temperature and the etch rate increased with Cl2 pressure from 0.4 to 2.0 Torr. At substrate temperatures above 75°C, the etch rate increased with increasing substrate temperatures and was independent of Cl2 pressure. Analysis of the temperature dependence of the total etch rate above 75°C according to an Arrhenius expression gave an activation energy of 11.8 kcal/mol, which is consistent with the enthalpy of vaporization of GaCl3. The onset of the temperature dependent region coincides with the melting point of GaCl3.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Donnelly, V. M., Flamm, D. L., Tu, C. W., and Ibbotson, D. E., J. Electrochem. Soc. 129, 2533 (1982).Google Scholar
2. McNevin, S. C. and Becker, G. E., J. Appl. Phys. 58, 4670 (1985).Google Scholar
3. Balooch, M., Olander, D. R., and Siekhaus, W. J., J. Vac. Sci. Technol. B 4, 794 (1986).Google Scholar
4. Ameen, M. S. and Mayer, T. M., J. Appl. Phys. 63, 1152 (1988).Google Scholar
5. O’Brien, W. L., Paulsen-Boaz, C. M., Rhodin, T. N., and Rathbun, L. C., J. Appl. Phys. 64, 6523 (1988).Google Scholar
6. Furuhata, N., Miyamoto, H., Okamoto, A., and Ohata, K., J. Appl. Phys. 65, 168 (1989).Google Scholar
7. Ha, J. H., Ogryzlo, E. A., and Polyhronopoulos, S., J. Chem. Phys. 89, 2844 (1988).Google Scholar
8. Hou, H., Zhang, Z., Chen, S., Su, C., Yan, W., and Vernon, M., Appl. Phys. Lett. 55, 801 (1989)Google Scholar
Hou, H., Su, C., and Vernon, M., (to be published).Google Scholar
9. Takai, M., Tokuda, J., Nakai, H., Gamo, K., Namba, S., in Laser-Controlled Chemical Processing of Surfaces, edited by Johnson, A. W., Ehrlich, D. J., and Schlossberg, H. R. (North-Holland, New York, 1984) p. 211 Google Scholar
Takai, M., Tsuchimoto, J., Tokuda, J., Nakai, H., Gamo, K., and Namba, S., Appl. Phys. A 45, 305 (1988).Google Scholar
10. Ashby, C. I. H., Appl. Phys. Lett. 45, 892 (1984)Google Scholar
Appl. Phys. Lett. 46, 752 (1985).Google Scholar
11. Qin, Q., Li, Y., Jin, Z., Liu, X., and Zheng, Q., Chem. Phys. Lett. 149, 128 (1988).Google Scholar
12. Koren, G. and Hurst, J. E. Jr., Appl. Phys. A 45, 301 (1988).Google Scholar
13. Maki, P. A. and Ehrlich, D. J., Appl. Phys. Lett. 55, 91 (1989).Google Scholar
14. Berman, M. R., Thin Solid Films (submitted).Google Scholar
15. Green, D. L., Wong, H.-F., Lishan, D. G., Liu, T.-Y., Hu, E. L., Petroff, P. M., Holtz, P. O., and Mere, J. L., Inst. Phys. Conf. Ser. No. 96, 347 (1988).Google Scholar
16. Burgess, D. Jr., Stair, P. C., and Weitz, E., J. Vac. Sci. Technol. A 4, 1362 (1986).Google Scholar
17. Dumas, Y. and Potier, A., Bull. Soc. Chim. Fr. 4, 1319 (1970).Google Scholar
18. McNevin, S.C., J. Vac. Sci. Technol. B 4, 1216 (1986).Google Scholar