Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-26T04:45:27.513Z Has data issue: false hasContentIssue false

Evolution of the Nanostructure of Giant Magnetoresistance Heterogeneous Alloys CoxAg1-x Upon Annealing

Published online by Cambridge University Press:  15 February 2011

J. R. Regnard
Affiliation:
Département de Recherche Fondamentale sur la Matière Condensée/SP2M, CEA/Grenoble, 17, rue des Martyrs, 38054 Grenoble Cedex 9, France
C. Revenant-Brizard
Affiliation:
Département de Recherche Fondamentale sur la Matière Condensée/SP2M, CEA/Grenoble, 17, rue des Martyrs, 38054 Grenoble Cedex 9, France
B. Dieny
Affiliation:
Département de Recherche Fondamentale sur la Matière Condensée/SP2M, CEA/Grenoble, 17, rue des Martyrs, 38054 Grenoble Cedex 9, France
B. Mevel
Affiliation:
Département de Recherche Fondamentale sur la Matière Condensée/SP2M, CEA/Grenoble, 17, rue des Martyrs, 38054 Grenoble Cedex 9, France
J. Mimault
Affiliation:
Laboratoire de Métallurgie Physique, SP2MI, Blvd 3, Téléport 2, B.P. 179, 86960 Future-scope Cedex
Get access

Abstract

Heterogeneous alloys CoxAg1-x with atomic concentrations x=0.20 and 0.35, presenting giant magnetoresistance properties, have been studied by Total Electron Yield X-ray absorption spectroscopy at liquid nitrogen temperature at the Co K edge after annealings at various temperatures. For both sample concentrations, the Co atoms are mainly in small filament agglomerates for the as-deposited and low temperature annealed samples (T<150°C). In this temperature range, the local Co atomic environment is very stable and disordered. A structural change has been detected by XANES and EXAFS analysis between the 250 and 400°C annealings. After a 400°C annealing during 10 min, the nanostructures evolve towards larger, more compact and well ordered granules. The Co-Co distance varies from 0.246 to 0.248 nm as the annealing temperature increases indicating that the small filament-shaped agglomerates are under strain in the Ag matrix. The Debye-Waller factor of the Co0.35Ag0.65 samples decreases continously as the annealing temperature increases, as this factor drops suddenly after a 250°C annealing for the Co0.20Ag0.80 sample. The Co agglomeration is steadily larger for the Co0.35Ag0.65 sample than for the Co0.20Ag0.80 one. The Co-Ag contribution is negligible for the Co0.35Ag0.65 sample, as it represents approximately one third of the nearest neighbors for the Co0.20Ag0.80 sample from the as-deposit up to a 250°C annealing stage.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Berkowitz, A., Young, A.P., Mitchell, J.R., Zang, S., Carey, M.J., Spada, F.E., Parker, F.T., Hutten, A. and Thomas, G., Phys. Rev. Lett. 68, 3745 (1992)Google Scholar
[2] Xiao, J.G., Jiang, J.S. and Chien, C.L., Phys. Rev. Lett. 68, 3749 (1992)Google Scholar
[3] Cowache, C., Dieny, B., Teixeira, S.R., Redon, O., Proceedings of the International symposium on magnetism in systems of reduced dimension (KOLTROVKA 95), Ekaterimburg, Feb. 94Google Scholar
[4] Regnard, J.R., Juanhuix, J., Brizard, C., Dieny, B., Mevel, B., Mimault, J., Proux, O., Low temperature total electron yield EXAFS study of CoxAg1-x granular alloys, accepted at "Solid State Comm."Google Scholar
[5] Mimault, J., Faix, J.J., Girardeau, T., Jaouen, M. and Tourillon, G., Meas. Sci. Technol. 5, 482 (1994)Google Scholar
[6] Gurman, S.J., Binsted, N., Ross, I. , J. Phys. C : Solid State Phys. 17, 143 (1984)Google Scholar