Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-08T05:41:21.776Z Has data issue: false hasContentIssue false

Evolution of Nanoscale Ferromagnetic Particles in Co-Cr and Cr-Fe Alloys Observed by Atom Probe Field Ion Microscopy

Published online by Cambridge University Press:  15 February 2011

K. Hono
Affiliation:
National Research Institute for Metals, 1-2-1 Sengen, Tsukuba 305, Japan
R. Okano
Affiliation:
Institute for Materials Research, Tohoku University, Sendai 980-77, Japan
K. Takanashi
Affiliation:
Institute for Materials Research, Tohoku University, Sendai 980-77, Japan
H. Fujimori
Affiliation:
Institute for Materials Research, Tohoku University, Sendai 980-77, Japan
Y. Maeda
Affiliation:
NTT Basic Research Laboratories, Atsugi, Japan
T. Sakurai
Affiliation:
Institute for Materials Research, Tohoku University, Sendai 980-77, Japan
Get access

Abstract

With appropriate processing conditions, nanoscale ferromagnetic particles precipitate from nonmagnetic matrix phase in the Co-Cr and Cr-Fe systems. In these heterogeneous alloys, unique magnetic properties are observed. In order to correlate such magnetic properties with the microstructures, we have employed an atom probe field ion microscope (APFIM) and a three dimensional atom probe (3DAP). In the Co-22Cr thin film sputter-deposited at elevated temperatures (~500 K), both APFIM and 3DAP data convincingly showed that the film was composed of lamellae-like ferromagnetic and paramagnetic phases of approximately 8 nm in thickness. On the other hand, it was shown that the films sputter-deposited at ambient temperature was composed of s-Co single phase without significant compositional heterogeneity. Based on these observations, we conclude that phase separation progresses during the growth of the film on a heated substrate. In the Cr-Fe alloy, large negative MR was observed in the as-quenched alloy at liquid helium temperature. However, the MR behavior changes as the phase decomposition progresses by annealing. The change in the MR behavior observed in this alloy with various heat treatment conditions will be discussed based on the microstructural characterization results by APFIM and 3DAP.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Miller, M. K. and Smith, G. D. W., Atom-Probe Microanalysis: Principles and Applications to Materials Problems, MRS, Pittsburgh, 1989.Google Scholar
2. Cerezo, A., Godfrey, T. J. and Smith, G. D. W., Rev. Sci. Instrum, 59, 862 (1988).Google Scholar
3. Cerezo, A., Hetherington, M. G., Hyde, J. M., Miller, M. K., Smith, G. D. W. and Underkoffler, J. S., Surf. Sci. 266, 471 (1992).Google Scholar
4. Hasegawa, N., Hono, K., Okano, R., Fujimori, H. and Sakurai, T., Appl. Surf. Sci. 67, 407 (1993).Google Scholar
5. Hono, K., Hashizume, T. and Sakurai, T., Surf. Sci. 266, 506 (1992).Google Scholar
6. Hono, K., Okano, R., Saeda, T. and Sakurai, T., Appl. Surf. Sci. (1995) in press.Google Scholar
7. Yogi, T. and Nguyen, T. A., IEEE Trans. Mag. MAG- 29, 307 (1993).Google Scholar
8. Shiroishi, Y., Yoshida, K., Futamoto, M. and Aoi, H., J. Mag. Soc. Jpn. 17, 784 (1993).Google Scholar
9. Iwasaki, S. and Ouchi, K., IEEE Trans. Mag. MAG- 14, 849 (1978).Google Scholar
10. Coughlin, T. M., Judy, J. H. and Wuori, E. R., IEEE Trans. Mag. MAG- 17, 3169 (1981).Google Scholar
11. Johnson, K. E., Mahlke, J. B., K. J. Schulz and Wall, a. C., IEEE Trans. Mag. MAG- 29, 215 (1993).Google Scholar
12. Zhu, J. and Bertram, H. N., J. Appl. Phys. 63, 3248 (1988).Google Scholar
13. Fisher, R. D., Au-Yeung, V. S. and Sabo, B. B., IEEE Trans. Mag. MAG- 20, 806 (1984).Google Scholar
14. Smits, J. W., Luitjens, S. B. and Broeder, F. J. A. den, J. Appl. Phys. 55, 2260 (1984).Google Scholar
15. Iwasaki, S., Ouchi, K. and Hizawa, T., J. Mag. Soc. Jpn. 9, 57 (1985).Google Scholar
16. Sagoi, M., Nishikawa, R. and Suzuki, T., IEEE Trans. Mag. MAG- 22, 1335 (1986).Google Scholar
17. Ouchi, K. and Iwasaki, S., IEEE Trans. Mag. MAG- 18, 1110 (1982).Google Scholar
18. Chapman, J. N., McFadyen, I. R. and Bernards, J. P. C., J. Mag. Mag. Mater. 62, 359 (1986).Google Scholar
19. Jhingan, A. K., J. Mag. Mag. Mater. 54–57, 1685 (1986).Google Scholar
20. Rogers, D. J., Chapman, J. N., Bernards, J. P. C. and Luitjens, S. B., IEEE Trans. Mag, MAG- 25, 4180 (1989).Google Scholar
21. Maeda, Y., Hirono, S. and Asahi, M., Jpn. J. Appl. Phys. 24, L951(1985).Google Scholar
22. Maeda, Y., Asahi, M. and Seki, M., Jpn. J. Appl. Phys. 25, L668 (1986).Google Scholar
23. Maeda, Y. and Asahi, M., J. Appl. Phys. 61, 1972 (1987).Google Scholar
24. Maeda, Y. and Takahashi, M., Jpn. J. Appl. Phys. 28, L248 (1989).Google Scholar
25. Yoshida, K., Kakibayashi, H. and Yasuoka, H., J. Appl. Phys. 68, 705 (1990).Google Scholar
26. Takei, K. and Maeda, Y., Jpn. J. Appl. Phys. 30, L1125 (1991).Google Scholar
27. Maeda, Y. and Takahashi, M., J. Appl. Phys. 68, 4751 (1990).Google Scholar
28. Snyder, J. E. and Kryder, M. H., J. Appl. Phys. 73, 5551 (1993).Google Scholar
29. Suzuki, J., Morii, Y., Takei, K. and Maeda, Y., J. Mag. Mag. Mater. (1994).Google Scholar
30. Hono, K., Babu, S. S., Maeda, Y., Hasegawa, N. and Sakurai, T., Appl. Phys. Lett. 62, 2504 (1993).Google Scholar
31. Hono, K., Maeda, Y., Li, J-L. and Sakurai, T., IEEE Trans. Mag. 29, 3745 (1993).Google Scholar
32. Hono, K., Maeda, Y., Babu, S. S. and Sakurai, T., J. Appl. Phys. 76, 8025 (1995).Google Scholar
33. Hono, K., Yeh, K., Maeda, Y. and Sakurai, T., Appl. Phys. Lett. 66, 1686 (1995).Google Scholar
34. Hasebe, M., Oikawa, K. and Nishizawa, T., J. Jpn. Inst. Metals, 46, 577 (1982).Google Scholar
35. Baibich, M. N., Broto, J. M., Fert, A., Dau, F. Ngyen van, Petroff, F., Eitenne, P., Creuzet, G., Friederich, A. and Chazelas, J., Phys. Rev. Lett. 61, 2473 (1988).Google Scholar
36. Parkin, S. S. P., Bhadra, R. and Roche, K. P., Phys. Rev. Lett. 66, 2152 (1991).Google Scholar
37. Petroff, F., Barthelemy, A., Mosca, D. H., Lottis, D. K., Fert, A., Schroeder, P. A., Pratt, W. P. Jr, Loloee, R. and Lequien, S., Phys. Rev. B 44, 5355 (1991).Google Scholar
38. Araki, S., Yasui, K. and Narumiya, Y., J. Phys. Soc. Jpn. 60, 2827 (1991).Google Scholar
39. Santos, C. S., Rodmacq, B., Vaezzadeh, M. and George, B., Appl. Phys. Lett. 59, 126 (1991).Google Scholar
40. Berkowitz, A. E., Mitchell, J. R., Carely, M. J., Young, A. P., Zhang, S., Spada, F. E., Parker, F. T., Hutten, A. and Thomas, G., Phys. Rev. Lett. 68, 3745 (1992).Google Scholar
41. Xiao, J. Q., Jian, J. S. and Chien, C. L., Phys. Rev. Lett. 68, 3749 (1992).Google Scholar
42. Chien, C. L., Xiao, J. Q. and Jiang, J. S., J. Appl. Phys. 73, 5309 (1993).Google Scholar
43. Kataoka, N., Endo, H., Fukamichi, K. and Shimada, Y., Jpn. J. Appl. Phys. 32, 1969 (1993).Google Scholar
44. Wecker, J., Helmolt, R. von, Schulz, L. and Sawer, K., Appl. Phys. Lett. 62, 1985 (1993).Google Scholar
45. Takeda, H., Kataoka, N., Fukamichi, K. and Shimada, Y., Jpn. J. Appl. Phys. 33, 102 (1994).Google Scholar
46. Chen, L. H., Jin, S. and Tiefel, T. H., J. Mater. Res. 9, 1134 (1994).Google Scholar
47. Takanashi, K., Sugawara, T., Hono, K. and Fujimori, H., J. Appl. Phys. 76, 6790 (1994).Google Scholar
48. Okano, R., Hono, K., Takanashi, T., Fujimori, H. and Sakurai, T., J. Appl. Phys. (1995) in press.Google Scholar